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Acfel/Synopsys VHD L Methodology 
Handbook Overview 

VHDL is a high level description language for system and circuit 
design. The language supports various levels of abstraction. At higher 
levels of abstraction the user can conceptually design a system 
without regard to a specific technology. Traditionally, only when the 
system (design) is functioning and validated through high level 
simulation does a designer need to consider a specific target 
technology (Figure 1). 

Note The code is translated to RTL code- not to be confused with behavioral 
code. It is the desire of designers to keep technology specific code to a 
minimum. In this way, a designer may migrate from one technology to 
another while keeping source code changes to a minimum. 

Top-Down Design Flow 

11 Translate to Behavior 

I Physical 
Implementation 

Figure 1. Top-Down Design Flow 
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In general, designers write their code very generic and hope that the 
design tools will ultimately make smart technology specific choices. 
This method works, but to get the most optimum performance (read: 
high speed) from your devices some things must be considered. It is 
those considerations and trade-offs that will be covered in this 
manual. It is also the focus of this manual to provide the designer 
with enough insight (hints) to be able to make trade-offs when coding 
their system (or design). A selection of trade-offs will be listed. A 
designer, depending on how much they're pushing the density or 
performance envelopes, may choose to employ none, some, or all of 
them. Some considerations are subtle, some obvious, some 
technology specific, and some technology independent. 

Common Problems Addressed 
The classic problem that we, at Actel, see is a designer debugging 
Actel devices before the technology independent simulations are 
complete. If your simulation strategy does not support this 
methodology this manual will try and lessen the cycle time. This will 
be achieved by recognizing the special resources available in each 
device family and properly using them. 

Methodology Handbook Stasis 
This document is meant to be a "living" document and by no means 
the "know-all" repository of all Field Programmable Gate Arrays 
(FPGA) specific hints. If you have examples and guidelipes that have 
worked for you please pass them on to Actel by e-mailing them to 
tech@actel.com or FAXing them to (408) 739-1540. 
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Prerequisites 
This manual is NOT a VHDL tutorial! Knowledge of the basic 
constructs of VHDL is assumed. If you need more details, training in 
VHDL and top-down design in general is available from a number of 
different sources. Even though knowledge of the Actel, Action Logic 
System (ALS), design suite is recommended (but not required) be 
sure to have an Actel Data Book and Macro Library Manual handy. 

Also required is access to Synopsys Design Compiler Version. 3.1 + 
with Actel Technology Libraries (Version. 3.1 ). 

Note Some enhanced features available with FPGA Compiler are NOT 
available in Design Compiler. These features can (and will) affect 
maximum density and performance. If you have Design Compiler it 
may not be necessary to obtain a license for FPGA Compiler if the 
results obtained meet the design constraints. Also, throughout this 
manual Design Compiler is used to denote the complete set of 
Synopsys tools (Design Analyzer, FPGA Compiler, VHDL 
Compiler, etc.) 

Synthesis and Actel 
In general, technology mappers want one thing-small homogenous 
building blocks. It is for that reason that most ASICs are mapped 
reasonably well when it comes to speed and density. The basic 
building block is typically an equivalent of a 2 input NAND gate. 
Also, the ASIC interconnect is a metal-to-metal "via" that doesn't 
represent a significant amount of the circuit delay. Therefore the 
mapper can produce less than optimal solutions and the ASIC 
technology will be much more forgiving. FPGAs, on the other hand, 
are much less forgiving. Yes, it is true that the tools have dramatically 
improved recently, but an FPGA design that pushes either the speed 
or density envelope will require more consideration. 
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Actel, unlike any other leading FPGA manufacturer, makes devices 
that have small homogeneous building blocks. This makes for easier 
coding and fewer technology specific considerations. Ultimately you 
want the synthesis tool to achieve near the schematic performance 
with the ease of high-level design. With Actel it will be shown that 
this is possible. 

In This Manual 
Chapter 2: Summary of Hints and Tips covered in this manual. 

Chapter 3: Actel device architectures is discussed here to 
familiarize the user with the resources available. 

Chapter 4: Covers tips on using Synopsys Design Compiler. 

Chapter 5: Some VHDL constructs and styles will be covered. 

Chapter 6: Covers basic cell instantiation. 

Chapter 7: A compilation of Actel's most commonly asked 
questions about the SynopsysIActel technology kit. 



Summary of Hints and Tips 

Below is a summary of the hints and tips covered in this manual. To 
see more detail on each hindtip please refer to the associated chapter. 

Simulate Before Place and Route 
In Chapter 1, high-level technology independent simulation was 
discussed (see Figure I). In general, the cycle time from EDIF netlist, 
place/route/timing-extract to back-annotated timing can be anywhere 
from thirty minutes to two hours. It is our experience, here at Actel, 
that designers spend many unnecessary hours in this loop before the 
design has been "wrung-out". We believe that only after the designer 
has successfully proven the functionality should the device be 
mapped. As stated earlier, if the designer's current simulation strategy 
does not support this then this manual will try to lessen the cycle time 
by providing helpful hints before the design starts. 

Know the Device/Family Resources 
Another observation by the team, here at Actel, is the improper usage 
of the special resources available in each family (refer to Chapter 3). 
It is through these resources that designers can realize fast, compact, 
and reliable designs. See Chapter 4 and Chapter 6 for more details. 



Use Scripts Properly 
Another common mistake is not using Design Compiler's scripts 
properly. It will be shown in Chapter 5 that without modifying the 
source VHDL code the state machine order, encoding style and 
optimization parameters can be modified. 

Use Design Constraints 
As discussed in Chapter 4, it is most important that Design Compiler 
knows the design goals. Also, remember it is just as important to 
identify what is not critical as well as what is. 

Using Actel's TDPR 

In the near future, Actel will be releasing a Timing Driven Place and 
Route (TDPR) tool. Synopsys design constraints will automatically 
be converted from Synopsys format to Actel format. It makes it even 
more imperative to use proper, complete design constraints. 
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Use "Case " When Possible 
In Chapter 5, it will be suggested that the designer use case 
statements instead if long nested if -then-elm. The reasoning is 
two-fold; 

1. Case statements are compared to a single vector. In general, this vector 
can be thought of as the "select" inputs to a multiplexer. Actel FPGAs are 
built on multiplexer technology (see Figure 3 and Figure 5). It is a natural 
fit to use muxes when possible. 

2. Case statements force structure to complex decoding situations. 
~f -then-alee's do allow maximum flexibility but they may not produce 
compact logic. It has been our experience, here at Actel, that on 
numerous occasions (incorrectly coded) complex i f  -then-else 

statements were the cause of some logic (state-machine) problems. 

Use ACTgen for Structured Macros 
In general, ACTgen uses the Actel technology the most efficiently. It 
was this technology that was used to construct the DesignWare 
libraries (Chapter 5). But, for macros not automatically inferred by 
DesignWare ACTgen will should be used as the designer's most 
effective path to high-density, high-speed design. 
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Overview of Actel Device Families 

Currently, Actel FPGAs are antifuse based. Actel is the home of 
antifuse technology. Technically the type of interconnect technology 
should not matter to the synthesis user. This would be true if the type 
of interconnect did not dictate the architecture (which is of some 
concern to the synthesis user). Physically antifuses are a two-terminal 
via type device. They are small (they reside underneath the routing 
lines) and have minimal impedance. The small area and low 
impedance allows Actel to build devices with a structure similar to 
channeled gate arrays (lots of small "simple" building blocks with an 
abundance of routing). This in turn allows the synthesis user to be less 
concerned with device architecture and more concerned with coding 
hints and resource types available. 

The following data is covered in detail in the Actel data books. The 
intent of this section is to familiarize the VHDL designer with Actel 
specific features and resources of each device family. 

ACT 7 Family 
The ACT 1 family represents Actel's first generation of FPGAs. 
Currently, there are two devices available (Table 1). An ACT 1 device 
is structured much like a channeled gate array (Figure 2). Logic 
modules (logic resources) are distributed in an X,Y array surrounded 
by I/O modules ( I10  resources). All logic and VO resources are 
identical in structure. The only exception is the clock module. 

Table I .  ACT 1 Family Projlc 

Device Gates Module RegiPtcrs User U0 



odule 

lule 

Chann 

Figure 2. Channeled Gate Array Overview 

ACT 1 Logic Resources 
The ACT 1 logic module is an 8-input, one-output logic circuit 
chosen for the wide range of functions it implements and for it's 
efficient use of interconnect routing resources (Figure 3). 

This logic module can implement the four basic logic functions 
(NAND, AND, OR, and NOR) in gates of two, three, or four inputs. 
The logic module can also implement a variety of D-latches, 
exclusivity functions and complex AND-ORs type functions. No 
dedicated registers are available in the array. Instead registers are built 
with two latches configured as a master-slave (hence the register 
count is half that of the module count-Table 1). 



Overview of Actel Device Families 

Figure 3. ACT 1 Logic Module (Logic Resource) 
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ACT I l/O Resources 
Each UO pin is available as an input, output, three-state or 
bi-directional buffer (Figure 4). Input and output levels are 
compatible with standard IITL and CMOS specifications. See 
Electrical Specifications in the Actel data book for additional UO 
buffer specifications. 

Figure 4. ACT 1 I/O module 

ACT I Special Resources 

Each ACT 1 type device has a single high drive, low skew clock 
buffer (CLKBUF). This is treated as an UO module that can drive 
many internal loads. This resource may derive it's source from within 
the array. When used in this manner an UO pin must be used in 
conjunction with a special resource (CLKBIBUF). This is essentially 
a bi-directional buffer (Figure 4) with the output (Y) connected to the 
clock network. The regular clock buffer (CLKBUF) is the same 
device with the D and E inputs disabled. 
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ACT 2 Family 
The ACT 2 family represents Actel's second generation of FPGAs. 
Currently there are three devices available (Table 2). Like ACT 1, an 
ACT 2 device is structured much like a channeled gate array. Logic 
modules (logic resources) are distributed in an X,Y array surrounded 
by VO modules (110 resources). The ACT 2 family's logic resources 
come in two styles. The VO have been enhanced with bi-directional 
latches. There are two clock networks on each device of the ACT 2 
family. 

Table 2. ACT2 Family Profile 

Device Gates Module Registers User I/0 

ACT 2 Logic Resources 
The ACT 2 logic resources are classified into two types: 
combinatorial (C-modules) and sequential (S-modules). The ACT 2 
C-module (Figure 5) is an enhanced version of the ACT 1 style 
module and can now implement up to 5 input functions. 
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Figure 5. ACT 2 C-module (Logic Resource) 

The S-module (Figure 6) is designed to implement high-speed 
register functions within a single logic resource. The S-module is 
configured as a C-module followed by a storage element, either a 
D-type register or latch. The storage element can be disabled by 
configuring the storage element as a latch and permanently enabling 
it. Likewise, the combinatorial logic can be disabled by connecting 
the select inputs to zero and bringing data in through a mux input. 
Notice the CLR and SO1 inputs share a pin. This affects 
combinability. 

Synopsys Design Compiler takes full advantage of the S-module. 
This is essential for fast, compact designs. 

Note The S-module storage element's clear input is active low only! 
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Figure 6. ACT 2 S-module Implementations (Logic Resource) 

ACT 2 1/O Resources 
The ACT 2 I/0 resource is an enhanced version of the ACT 1 I/O 
module (Figure 7). In addition to each I/0 pin as an input, output, 
three-state or bi-directional buffer a latch is available on both input 
and output. This latch can be combined with a second latch within the 
array to construct registered inputs and outputs (for faster input set-up 
and clock-to-out times). Input and output levels are compatible with 
standard TTL and CMOS specifications. See Electrical Specifications 
in the Actel data book for additional I/O buffer specifications. 
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GIN JFf 
Figure 7. ACT 2 I/O module 

ACT 2 Special Resources 
Each ACT 2 type device has two high drive, low skew clock buffers. 
There are treated as I/O modules that can drive many internal loads. 
Unlike the ACT 1 version, the ACT 2 clock buffers need not use an 
external I/O pin when driving an internal load. The internal clock 
(CLKINT) is used in this case. 
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ACT 3 Family 
The ACT 3 family represents Actel's third generation of high 
performance FPGAs. Currently there are five devices available 
(Table 3). Like ACT 1 and ACT 2, an ACT 3 device is structured 
much like a channeled gate array. Logic modules (logic resources) are 
distributed in an X,Y array surrounded by I/O modules (LIO 
resources). Like ACT 2, ACT 3 family's logic resources come in two 
styles. The I/O have been enhanced with bi-directional registers with 
a dedicated VO clock for fast Clock-to-Out times (elOns) and low 
input set-up times. A special high-speed clock network (HCLK) has 
been added in addition to the two clock networks identical to the 
ACT 2 family. 

Table 3. ACT3 Family Projle 

Device Gates Module Registers User I/0 

A1415 1500 200 >I04 80 

A 1425 2500 3 10 >I60 100 

A 1440 4000 564 >288 140 

A 1460 6000 848 A 3 2  168 

A14100 loo00 1377 >697 228 

ACT 3 Logic Resources 
Like ACT 2, the ACT 3 logic resources are also classified into two 
types: combinatorial (C-modules) and sequential (S-modules). The 
C-module is exactly like the ACT 2 C-module (Figure 5). The ACT 3 
S-module (Figure 8) is an improved version of the ACT 2 
S-module. 
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CLR I 

Figure 8. ACT 3 S-module Implementations (Logic Resource) 

The ACT 3 S-module has a separate CLR input. This allows all 
combinatorial functions (C-modules) that are followed by a simple 
data storage element to be combinable. 

ACT 3 1/O Resources 
Like ACT 2, ACT 3 I/Os perform simple buffer configurations. In 
addition, a high-speed register is available on both input and output 
for very fast input set-up and clock-to-out times (Figure 9). The data 
input may be derived from the output register output or directly from 
the pad (Figure 10). Input and output levels are compatible with 
standard TTL and CMOS specifications. See Electrical Specifications 
in the Actel data book for additional I/O buffer specifications. 
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IOCLK 

PREICLR 

D- D 
ODE 4 

IOCLK - 

Figure 9. ACT 3 110 module (with bi-directional registers) 

D 

ODE 
IOCLK 

Y i 

ODE 

PREICLR 

Q -  
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-D Q Y  
PAD 

4 ODE 
- 

Y 

Figure 10. ACT 3 VO module (registered with dual feedback) 
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ACT 3 Special Resources 
Each ACT 3 type device has 4 special I/O resources. Use of these is 
key to compact, high-speed and reliable designs. Like ACT 2, an 
ACT 3 device has two high drive, low skew clock buffers (CLKBUF). 
These special I/O buffers need not use an external I/O pin when 
driving an internal load. The internal clock (CLKINT) is used in this 
case. In addition, there is a very high-speed clock buffer network. 
(HCLKBUF). This clock buffer should be used for signals faster than 
75 MHz. The I/0 registers (Figure 9 and Figure 10) use a dedicated 
UO clock (IOCLKBUF) and resetlpreset network (IOPCLBUF). 

Note Synopsys Design CompilerV3.1+ will automatically use the I/O 
registers where ever possible. There are some limitations. See 
Chapter 4 for more details. 

Mapping and Combinability 
Actel FPGAs have a simple combinatorial building block used to 
construct from simple to complex functions using mapping. For 
example, in Figure 11 one of the many possible mappings of a three 
input AND (AND3) gate is shown. Logic that can fit in an ACT 2 or 
ACT 3 C-module (Figure 5 on page 14) with an output load of 1 and 
followed by a simple storage element is called combinable 
(Figure 12). This eliminates one level of logic (delay) and doesn't 
increase logic resources used (logic is already in front of S-module). 
In ACT 2 there is an exception. If the C-module logic must use both 
of it's local AND gate's inputs to synthesize the desirable function 
then this function can not be combined. Synopsys Design Compiler 
3.1+ resolves this by using DFM7x's and DFM8x's (complex 
flip-flops) for ACT 2 and ACT 3 respectively. 
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Figure I I .  One 

9 

(of many) AND3 Mappings 

CLK CLK 

CLR 

Figure 12. Combining of C-mod and Simple Register 

When doing timing analysis or simulation, this reduced level of logic 
will represent no delay, To keep the timing characteristics coherent, 
ALS will back-annotate 0 ns for the combined function block into the 
simulator or the ALS timing tool (timer). 
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Speed Grades and Timing Characteristics 
All Actel Device families come in multiple speed grades. A standard 
part represents a device that meets the minimum family timing profile 
(see data book). A part with a '-1' modifier is a device measured 
during the device sorting process to be 15 percent faster, a '-2' is 25 
percent faster, etc. Actel uses worst case derating to specify device 
timing (worst case voltage, temperature, and process) in the data book 
and ALS software. If the designer is using the Design Compiler's 
default typical derating factor then all timing numbers must be 
divided by 1.25. For example, if the worst case performance of a 
device is 30 MHz (33.33 ns) then to derate for Design Compiler, at 
typical derating, in multiple speed grades is: 

a) 33.33ns / 1.25 => 26.67ns (derate from typical to worst case) 

b) for '-1' (15% faster device) - 26.6711s * 1.15 => 30.67ns 

c) for '-2' (25% faster device) - 26.67ns * 1.25 => 33.33ns 

d) for '-3' (35% faster device) - 26.67ns * 1.35 => 36.001-1s 

Example 1. Sample Derating Calculations 



Tips Using Synopsys Design Compiler 

It is our experience, here at Actel, that the most commonly under 
utilized group of commands are constraints. Constraints are used 
identify what your design goals are. 

Setting Proper Design Constraints 
Constraints refer to measurable circuit characteristics such as area 
and timing. Design Compiler calculates design area and path delays 
using the area and timing values from the Actel technology library. 

There are two kinds of constraints: design-rule constraints and 
optimization constraints. In general, design-rule constraints reflect 
technology-specific restrictions that must be met for a functional 
design, (such as maximum loading on a net). Optimization 
constraints represent design goals that are desirable, but not crucial, 
to the operation of a design (such as the desired maximum circuit area 
or delay). Design Compiler tries to meet both types of constraints but 
gives emphasis to design-rule constraints, as they are requirements 
for a functional design. 

Design Compiler uses constraints to guide optimization and 
implementation of a design. Constraints define the goals of the 
synthesis process. Design Compiler tries to meet these goals when 
synthesizing a design. 

Design Compiler has a plethora of constraint-based commands. This 
manual will only focus on a subset of two types of optimization 
constraints: Speed and Area. 
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In general, the most important optimization constraint is maximum 
delay (max-aeia~). There are four types of delay categories 
(Figure 13). They are: 

Tcq Clock to Q : This is generally known as the synchronous 
speed of the circuit or the register to register delay. These 
paths are constrained by specifying the clock(s) for the 
registers. 

Tsu Set-Up : The delay from the input to valid data at the D-input 
of first flip-flop. These paths are usually constrained by 
specifying the clock for the register, and setting an input 
delay relative to a clock on the input port(IN1). 

Figure 13. Four types o f  timing paths 

- - 
CLK 

, IN2 OUT2 
Logic rn Q- ''o- 
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Tco Clock to Out : The delay from the clock to valid data at the 
output port (OUTI). These paths are usually constrained by 
specifying the clock for the register, and setting an output 
delay relative to a clock on the output port(OUT1). 

Tio In to Out : The delay from the input, through logic, then to 
the output. These paths can be constrained by setting an input 
delay on the input port (IN2), and either an output delay 
relative to a clock, or maximum and minimum delay targets 
on the output port (OUT2). 

For the purposes of simplicity this manual will focus on the register to 
register delays. Maximum delay target values for each timing path in 
the design are automatically determined after considering clock 
waveforms and skew, library setup times, external delays, multicycle 
or false path specifications and --delay commands. Load, drive, 
operating conditions, wire load models, and other factors are also 
taken into consideration. 

Design Compiler has a built-in static timing analyzer for evaluating 
timing constraints. A static timing analyzer calculates path delays 
from local gate and interconnect delays but does not simulate the 
design. That is to say, it does not check the design for functionality. 
The Design Compiler timing analyzer performs critical path tracing 
to check minimum and maximum delay for every timing path in the 
design. 

Note The most critical path is not necessarily the longest combinatorial path 
in a sequential design, since paths can be relative to different clocks at 
path start and endpoints. On the other hand, the Actel static timing 
analyzer (Timer), included with every ALS system, defaults to check 
only for the longest combinatorial paths. 
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Grouping Paths for Maximum Delay 

Path groups affect the way the maximum delay cost is computed. You 
can assign paths or endpoints to named groups. Paths are placed in 
groups with groupgath and create-clock commands. For further 
detail on the oroup~ath command(s) see Design Compiler Reference 
Manual. The following example uses the create-clock command to 
create a groupgath with all register to register paths, a delay 
constraint of 50ns (20 MHz), 50% duty cycle, and group (signal) 
name of cik. 

create-clock -period 50 -waveform ( 0  25) clk 

create-clock -period 50 clk 

Setting the Area Constraint 

The -area command specifies the maximum allowable area for the 
current design. Design Compiler computes the area of a design by 
adding together the areas of each of its components on the lowest 
level of the design hierarchy. The area of a cell is obtained from the 
Actel technology libraries. Maximum area is an optimization 
constraint and is therefore secondary to design-rule constraints (such 
as maximum fanout). 

To properly determine the maximum area in a given Actel device 
family use the "family profile" tables in Chapter 3. For example, to 
constrain a design into an Actel A1280 (ACT 2 family) Table 2 
indicates a total maximum area of 1232 modules. Design Compiler 
will attempt to meet this constraint. 
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Why Set Constraints 
Design Compiler, in many cases, can synthesize and optimize 
circuitry with many different configurations. If, for example, the 
desired speed was 20 MHz (5011s) but not specified, Design Compiler 
may (and will) default to area optimization and possibly provide a 
less than desirable result. On the other hand, if the area was overly 
restrictive to, say 800 modules in A1280, then Design Compiler may 
not have enough room to use a much faster, but larger, version of a 
function because it was too large. 

When setting constraints, setting the "don't cares" (the slowlstatic 
parts of circuit) is just as important (maybe more) than setting the 
target speed. In this way, Design Compiler does not use up precious 
high-speed resources for circuitry that may be static or control lines. 
In summary, setting the design constraints properly is the easiest way 
to realize correctly coded designs achieving the systems goals. 

Effectively Using Scripts 
The power of Design Compiler is it's flexibility through scripts. The 
source VHDL code need not be modified at all to achieve from a 
small, medium speed, compact design to a much faster, but larger, 
design. All throughout this manual you will see references to (design 
compiler shell or dc-shell) commands. In the previous section, it 
was shown how to set the target clock frequency and target area of a 
design. In the following sections it will be shown how, using scripts, a 
design can be manipulated to achieve higher performance with a 
minimal amount of effort and without changing the VHDL source. 
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Effectively Using Hierarchy 
Hierarchy in a VHDL design is a form of design partitioning 
performed with component instantiation and multiple 
entitylarchitecture pairs that define the contents of the components. 

Design Compiler supports automatic preservation of hierarchy in 
your design. The designer has the choice of either preserving the 
block functions or flattening the design at any branch to achieve 
group optimization. For example, a design may be fully flattened to 
attempt optimization of the complete design as one large block. 
Flattening a design may improve area and speed results but the final 
output could be hopelessly flattened beyond recognition as 
individually traceablelsimulateable blocks. 

Characterizing the Subdesigns to the Parent 

In Actel devices, local (non-global) net loading directly affects 
performance of a given signal path. If only a single net is highly 
loaded in a design and this net is the slowest path in a register to 
register group then this path will become the critical path (remember, 
it is the slowest delay that determines circuit speed). 

Hierarchical designs are composed of subdesigns. You can describe 
subdesigns independently of the parent design by characterizing or 
by modeling (modeling creates a characterized design as a library cell 
and will not be covered in this manual-please refer to the Design 
Compiler Reference Manual). Characterizing determines a 
Subdesign's port timing values, logical connection attributes, and 
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constraints by examining its context in the parent design. The 
characterize command automatically derives the boundary condition 
of subdesigns on its context in a parent design. Three types of 
boundary conditions are computed timing conditions, constraints, and 
connection relations. 

characterize instance-name / *  for example -> "U100" * /  

Using Global Signals and Special Resources 
Global signals, such as clocks, resets, and enables may be easier to 
design using high drive resources such as CLKBUFs and 
HCLKBUFs. Each Actel device has at least one and as many as four 
high drive resources. The following example will not buffer the reset 
line so that a special resource, like CLKBUF may be used. 

dont-touch-network find(port, rst) 

Using ACT 3 1/O registers 

The ACT 3 family of devices from Actel have dedicated registers in 
the I/O modules to facilitate fast input set-up times (<I .5ns) and fast 
clock to out times (dons) .  These resources are not automatically 
utilized by Design Compiler, a post-processing step is required. The 
following post-processing script (Example 2) is used to instantiate the 
special ACT 3 I/O buffers into a given design. 

Note Two new ports are created during this process "IOCLK and "IOPCL". 
To make sure simulation is coherent, the designer must add them to the 
simulation model (vectors). 
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/ *  create ports IOCLK & IOPCL and instantiate buffer cells * /  
createqort IOCLK 
create-cell "ioclk" act3/IOCLKBUF 
create-net {ioc 
1 k-ne t ) 
connect-net ioclk-net find(port, (IOCLK)) 
connect-net ioclk-net find(pin, (ioclk/PAD)) 
createqort IOPCL 
create-cell "iopcl" act3/IOPCLBUF 
create-net (iopcl-net) 
connect-net iopcl-net find (port, (IOPCL)) 
connect-net iopcl-net find(pin, (iopcl/PAD)) 

create-net {ioclk-net-out) 
connect-net ioclk-net-out find(pin, ioclk/~) 
create-net {iopcl-net-out] 
connect-net iopcl-net-out find(pin, iopcl/~) 

i 
/ *  to find name of clk net * /  
all-connected seecell + /CLK 
clock-net = dc-shell-status 

/ *  find cell names for reference * /  

/ *  to find name of set/reset net * /  
all-connected seecell + /IOPCL 
clear-net = dc-shell-status 

filter(find(cel1, " * " )  , "@refgame == ORECTH-NO-TRI 
@ref-name == IREC-SY @ref-name == IREP-SY 
@ref-name == ORECTH-SY @ref-name == ORECTL-SY 
@ref-name == OREPTH-SY @ref-name == OREPTL-SY 
@ref-name == ORECTL-NO-TRI @ref-name == OREPTH-NO-TRI 

/ *  disconnect this clock net & connect to dedicated net * /  
disconnect-net clock-net find(pin, seecell + /CLK) 
connect-net ioclk-net-out find(pin, seecell + /CLK) 

\ 
\ 
\ 
\ 

/ *  disconnect this reset net & connect to dedicated net * /  
disconnect-net clear-net find(pin, seq-cell + /IOPCL) 
connect-net iopcl-net-out find(pin, seecell + /IOPCL) 
1 

@ref-name == OREPTL-SY " )  

Example 2. Post processing script for special ACT 3 I/O 
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Note A link library 1ink.v is also required to use this script file. Contact the 
Actel Technical Support Hotline to obtain a copy of both scripts at 
(800) 262-1060 or e-mail at tech@actel.com. 

Running A LS from Within Design Compiler 
Actel's ALS tool suite supports simple command line operations that 
can be run from within the Design Compiler environment. Design 
Compiler has the ability to call UNIX and execute external 
commands. This is accomplished through the rh (shell) command. 
The following example (Example 3) will run all necessary ALS 2.3 
commands to convert Design Compiler EDIF output to ALS format, 
validate the design (rule checker), place, route, and then optionally 
invoke the Actel static timing analyzer (Timer). For a brief 
description of the ALS "Timer". 

sh cae2adl -edn2adl fam:act3 ednin:TEST.edn NObad0rigName:T TEST 
sh als -set fam act3 TEST 
sh als -set die 1460 TEST 
sh als -set package qfp208 TEST 
sh als -validate TEST 
sh als -place TEST 
sh als -route TEST 
sh als -xtract TEST 
sh als -timer TEST < TImR.SCR (optional invoking ofTimer) 

-- 

Example 3. DC-SHELL Script to run ALS from within Design Compiler 

Note TEST is the name of the top level design. In the above example, the 
design TEST is set to aA1460 (ACT 3) in a QFP208 package. Device, 
family and package only have to be set once. 



Verifying Synopsys Performance with ALS 
The ALS software contains a robust static timing analysis tool called 
the Timer. The Timer works on the principle of sets, much like Design 
Compiler's groups. The Timer will automatically build default sets 
using input buffers, output buffers, and registers. The default group 
for timing is register to register delays (using the clock net as a 
starting reference port). The following is the contents of TIMER.SCR 
from Example 4. 

orstop inpads adds input pads to stop paths at borders 
orstop outpads adds outputs pads to stop set 
longest get longest paths (defaults: Tcq) 
expand 0 expand worst path ' 0 '  

Example 4. Simple Timer command sequence to extract longest Tcq 
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In order to determine the most common issues with customer 
VHDL-based designs we, at Actel, did a wide study of our customer's 
design implementations. State machines construction and custom 
arithmetic functions had the highest percentage of recurrence. The 
following hints in this section are presented in a technology 
independent manner wherever possible. 

General State Machines Description 
The possible states of the state machine are listed in an enumerated 
type. A signal of this type (present-state) defines in which state the 
state machine is currently in. In a case statement of one process, a 
second signal (next-state) is updated depending on present-state 
and the inputs. In the same case statement, the outputs are also 
updated. A second process updates present-state with next-state 
every clock cycle except when the rst is asserted. 

Here is the VHDL code (Example 5) for such a typical state machine 
description. This design implements a post food processing unit. 

entity food-cycle is 
port (clk, rst, switch : in bit; 

full, gte-half, empty : in bit; 
water, purge : out bit); 

end food-cycle; 

architecture behavior of food-cycle is 
-- define possible states for state machine 
type state-type is ( reset, uwait, flush, fill, half) ; 
signal present-state, next-state : state-type; 

Example 5. Food Psot-Processor Unit 
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begin 
process (RST, CLK) -- registers 
begin 
if (rst = '0') then 
present-state <= reset; 

oleif( CLK='l' and CLK'event) then 
present-state <= next-state; 

end if; 
end process; 

process(present-state, rst, switch, full, gte-half, empty) 
begin -- transitions 
case present-state is 
when reset => -- reset state 

if(rst='ll and full='l') then 
next-state <= uwait; 

end if; 
water <= '1'; purge <= '0'; 

when uwait => -- wait for button push 
if(switch='l') then 
next-state <= flush; 

end if; 
water <= '0'; purge <= '0'; 

when flush => - - open purge 
if(empty='ll) then 
next-state <= fill; 

end if; 
water <= '0'; purge <= '1'; 

when fill => -- fill water / ignore switch 
if(gte-half='l') then 
next-state <= half; 

end if; 
water <= '1'; purge <= '0'; 

when half => - -  cont. fill / examine switch 
if(full='l') then 
next-state <= uwait; 

elsif(switch='l') then 
next-state <= flush; 

end if; 
water <= '1'; purge <= '0'; 

end case; 
end process; 

end behavior; 

Example 5. Food Psot-Processor Unit (Continued) 
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State Machine Design Hints 

There are various issues of coding style for state machines that might 
affect performance of the synthesized result. State machine style can 
have the most profound affect on FPGA performance. The following 
section will give the designer hints on technology independent coding 
styles. 

A first issue is the form of state machine that will be created. There 
are basically two forms of state machines, Mealy machines and 
Moore machines. In general, Moore machines have fewer states than 
a Mealy machine. In a Mealy machine, the outputs change during 
transitions from state to state. In a Moore machine, the outputs are 
derived directly from the present state and the inputs. 

To demonstrate this we will use the example of the food 
post-processor unit from the previous section. The Moore version is 
shown in Figure 14. 
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Figure 14. Graphical State Diagram of Example 5 
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State Encoding 

The present-state signal in Example 5 is of a user-defined 
enumerated type. There are five values (states) in this type: reset, 
uwait, flush, f i l l  and half. This means for simulation, present-state 

can appear in each of these five states. For synthesis, state assignment 
has to be done on a number of state bits to represent each of these 
states. By default, Design Compiler implements compact (binary) 
encoding. This means that three state bits are needed. Encoding is 
done based on the definition of the state type, counting left to right. In 
this example, the following state values are assigned to each state: 

Table 4. Compact Encoded State Bits 

state state-bits 012 

reset 

uwait 

flush 

fill 

half 

If you require different binary encoding values for each of the states, 
you must change the order of the enumerated type accordingly. 

Extracting an FSM from a Sequential Design 

Why does an FSM need to be extracted? So Design Compiler can 
know which registers are to be optimized as that FSM. In this way, 
the designer may changed encoding styles or simply let Design 
Compiler choose use the auto command. 

Figure 15 show the flow from a design or netlist to a Finite State 
Machine (FSM). Each step is shown with the relevant Design 
Compiler commands. Optional statements are shaded. 



There are two classes of state machines design that must be 
considered. When the entire design is the state machine or when the 
state machine registers are buried within the context of a larger 
design. The complete flow must be followed for the latter case. 

Read Design 

Mape Design 

Extract FSM 
extract F 

Figure 15. Extracting a Finite-State Machine From a Design 

The following steps will be required to extract and optimize this 
design. 
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Read Design 

Read the design into Design Compiler with the appropriate read 
command. For example, to read Example 5: 

read -format vhdl food-cycle.vhd 

Map Design 

If the design is not mapped, run c-iie to map the design to gates: 

cornpile -map_effort low / *  map-effort shown is optional * /  

Group FSM 

If the entire design is a state machine, this step is optional. Grouping 
the FSM part of a circuit produces a new level of hierarchy containing 
just the FSM state vector flip-flops and their associated logic. The 
new design is still in netlist format. The next step is to extract the 
FSM information to create an FSM representation. 

If not all flip-flops in the design are part of the state machine, use the 
set-fnm-state-vector command to name the FSM state vector 
flip-flops: 

set-fsm-state-vector (reset-reg, uwait-reg, .... ) 
use the group -fsm command to group the subset of the design that 
includes just the FSM flip-flops and their associated logic into a new 
level of design: 

group -fsm -design-name food-cycle-fern 

Finally, move down into the FSM part of the design by setting the 
current-design variable to the new FSM name: 

current-design = food-cycle-fsm 
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Extract FSM 

Extracting an FSM from a circuit changes the representation from a 
netlist format to FSM state-table format. Consult the Design 
Compiler Reference Manual for specific optimizations that can be 
supplied. This section will only cover binary and one-hot encoding 
methods. 

First, set the order of the state vector flip-flops with the 
set-fsm-state-vector command. The order of the flip-flops must 
agree with order of the state vector bits, that is, each bit in the state 
vector represented by one flip-flop in order: 

set-fsm-state-vector { reset-reg, uwait-reg, ... } 
Next, you can optionally set the state encoding with the 
set-f sm-encoding command (see Design Compiler Reference Manual 
-EfJicient FSM Extraction). State encoding tells Design Compiler 
the names and values of each state: 

set-fsm-encoding {"reset=O","uwait=2",....} 

Extract the FSM (convert the circuit into an FSM): 

extract 

You can optionally use the reduce-fsm command to minimize the 
state-transition logic: 

reduce-fsm 
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Optional FSM Optimization Styles 

Now that the design is optimized and represented internally as a state 
table, we can optimize for a different coding strategy. In this case, we 
will choose one-hot. First, re-extract design and then set new strategy 
as follows: 

/ *  re -extract * /  
set-fsm-state-vector ( reset-reg, uwait-reg,...) 
set-fsm-encoding (nreset=On,nuwait=2~,...) 

Set FSM Order 

To manually define the ordering of states and have Design Compiler 
automatically number the state vectors in binary or gray encoding: 

set-f-order ( reset, uwait, flush,. ..) 
set-fsm-encoding-style gray 

set-fsm-encoding-style binary 

Use One Hot Encoding 

To use one-hot encoding and to have Design Compiler automatically 
generate the state vectors for a very fast FSM, where only one bit per 
state is used: 

set-fsm-encoding-style one-hot 

Re-Optimize New FSM Design 

Now we re-optimize the FSM design, minimize and compile: 

set-f sm-minimize true 
compile 

Pop back a hierarchy level to write the design: 

current-design = food-cycle 
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Write FSM 

Once the is in FSM format, you can optionally write it to a file on the 
appropriate file format. In this example will write it out in the EDIF 
format: 

write -format edif -output food-cyc1e.edu 

Using One-Hot Encoding Strategy 

One-Hot (or Bit-Per-State) encoded state machines are state machines 
that will get one flip-flop per enumeration value (state). 

Table 5. Compact Encoded State Bits 

state state-bits 

reset 10000 

uwait 01000 

flush 00100 

fill 00010 

half 0000 1 

Only one bit is '1'  at any given time (hence "one-hot") in objects of 
one-hot encoded enumerated types. For example, on the previous 
example (Example 5) we saw that the five states produce a resultant 
state machine using three register bits (Table 4 on page 37). With 
one-hot encoding the register count would increase to five, one for 
each state (Table 5). 

This encoding strategy often improves the speed of the synthesized 
circuit and, in Actel FPGAs, flip-flops have very low area cost, the 
area may improve as well. A complete listing of a typical script file 
used for the design from Example 5 is shown in Example 6. We will 
assume that the state machine is but a small part of the design. 
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/ *  sets the level of hierarchy to FSM design * /  
current-design = food-cycle 
/ *  create clock (see section 3.1) * /  
create-clock -name clk -period "50" -waveform ("0" "25") {clk} 
/ *  make sure no logic is on reset line (port) * /  
dont-touch-network find(port, rst) 
/ *  compile design as shown with steps above * /  
compile 

set-fsm-state-vector {reset-reg, uwait-reg, .... 
group -fun -design-name food-cycle-fsm 
/ *  sets the level of hierarchy to FSM design * /  

current-design = food_cycle-fsm 
set-fern-state-vector (reset-regnuwait-reg,flush-reg...} 
set-fun-encoding 
(*reset=Om,"uwait=2n,mflush=4","fill=8n,half=l6n} 
extract 
/ *  reduce fern logic, set vector, encode, assign PSM order * /  
reduce-f un 
sat-fsm-state-vector {reset-reg,uwait-reg,flush-reg,...} 
set-fsm-encoding 
{areset=0a,nuwait*2n,nflush=4n,nfi11=8n,nhalf=l6m} 
set-fern-order { reset, uwait, flush, fill, half ) 

set-fun-encoding-style one-hot 
set-f em-minimize true 
compile 
current-design = food-cycle 
write -fozmat db -heirarchy -output ./food-cycle-hot.& 

Example 6. Commands (script) for One-Hot Design 

These steps should produce smaller faster machines due to the large 
number of registers in Actel devices. Refer to the FSM chapter in the 
Design Compiler Reference Manual for more details. 
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Manual One Hot State Encoding 

If you are not using enumerated types for your state-machines, or 
would like to have full control over the synthesized circuit, there is a 
way to do manual one-hot on a state-machine in VHDL. Using 
Table 5 and Figure 14 you can construct a simple shift-register like 
state-machine. Start by encoding the equations to the registers with 
the equations for each arrowhead. There are some considerations 
from this type of state-machine encoding. Using Example 5 they are: 

1. A case statement should not be used for state comparisons, since the state 
comparison has to depend on one bit of the state vector only. 
present-state used with a case statement can only compare the whole 
vector. 

2. The eisif construct should not be used to do the same state comparisons, 
since it introduces additional constraints on the values of each state. 
Using elsif means that this code is only entered if all of the previous 
conditions are false. In the case of one-hot encoding, it is certain that all 
previous conditions are false already. 

3. It is essential to assign nat-state to zero before the state transitions are 
generated. Since only a single bit of n~t-state will be set in the 
transitions process, combinatorial loops would have to generated to 
preserve the other bits if this initial assignment was not included. 

Automatic FSM Encoding Styles 

Additionally, Design Compiler can automatically select the most 
appropriate encoding style by replacing the argument as follows: 

set-fsm-encoding i 1 
set-fsm-encoding-style auto 
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The auto encoding style uses a proprietary algorithm in which the 
primary object is to determine a set of encodings that best reduces the 
complexity of the combinatorial logic while using the minimum 
number of encoding bits. Consequently, this encoding style is 
targeted toward area optimization. Speed is not addresses directly, 
but, in general, smaller area reduces delay. 

Note The maximum supported state vector length for auto encoding is 
30 bits. 

In summary, manual one-hot encoding is not a trivial process. If 
one-hot encoding does not produce the best implementation then the 
VHDL code will have to be re-written. In general, a more practical 
methodology for designing state-machines is to design a generic 
state-machine and let Design Compiler choose the configuration best 
for the application or manipulate the configuration through the script 
file commands. 

Power-up And Reset 
For simulation, the state-machine will initialized into the leftmost 
value of the enumeration type, but for synthesis it is unknown in 
which state the machine powers-up. Since Design Compiler does 
state encoding on the enumeration type of the state machine, the state 
machine could power up in a state that is not even defined in VHDL. 
Therefore to get simulation and synthesis consistency, it is very 
important to supply a reset to the state machine. 

If the desired state machine encoding style is one-hot then it is 
imperative that the state machine is supplied a reset. Since for one-hot 
style only a single register must be active, all others must be 
reset/inactive. Also, for Design Compiler, it is necessary that no logic 
must exists on the reset network. The dont-touch-network command 
can be used to assure that no logic is generated for the reset network 
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(Chapter 4). In order to achieve a high drive network (>24 loads) a 
high drive resource must be used. In ACT 2 and ACT 3 devices a 
CLKBUF is recommended (required) for highly loaded networks. 
See Chapter 3 for number of resources available. 

fflf-then-else" Versus "Case" 
The if -then-elso statement is used in VHDL to conditionally execute 
sequential statements. The case statement selects, for execution, one 
of a number of alternative sequences of statements. The chosen 
alternative is defined by the value of the expression. It is 
recommended that the designer uses the case statement in VHDL 
when they have a complex decoding situation. It is a more readable 
statement than a collection of nested if-then-else statements. It 
allows the designer to easily identify the value and associated actions. 
Additionally, if you want Design Compiler to generate a MUX 
structure for the case statement you should use the paralleYful1 case 
command. Otherwise a complex priority encoder will be synthesized 
(not friendly to a mux-based device). 

Arithmetic Elements And Design Ware 3,7 + 
When arithmetic and relational logic is used for a specific VHDL 
design, Design Compiler provides a method to synthesize technology 
specific implementations for these operations. Multiple 
implementations of these operations (small to fast) have been 
developed by Actel using the Actel structured macro generation tool 
ACTgen. DesignWare is a tool that can build the supported, functions 
(for bit sizes from 2 to 32 bits), but depending on the constraints (see 
Chapter 3) these functions may (or may not) be used. The 
DesignWare macros can offer performance improvements of up to 
80 percent. 
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Designware 3.1 Performance (Post Routed) 
Table 6 contains Designware "Add/Subtract" data. 

Table 6. ACT 3 (standard speed) Family Design Adder Performance 

Bits Area Freq 

3 modules 119 MHz 

9 119 

19 58 

35 57 

47 57 

50 45 

74 57 

57 38 

86 45 

87 37 

94 37 

74 32 

88 33 

124 36 

113 32 

11 1 28 

126 3 1 

133 27 

146 27 

140 30 

167 28 

156 27 

165 25 

202 24 

170 25 

DW Area 

3 modules 

9 

14 

19 

21 

26 

30 

35 

39 

49 

53 

DW Freq 

119 MHz 

119 

109 

104 

69 

69 

68 

66 

64 

66 

64 

63 

63 

63 

63 

63 

48 

48 

48 

47 

46 

47 

47 

48 

46 

Speed Up 

+O% 

+o 

+89 

+82 

+2 1 

+53 

+19 

+74 

+42 

+78 

+73 

+97 

+9 1 

+75 

+97 

+I25 

+55 

+78 

+78 

+57 

+64 

+74 

+88 

+loo 

+84 

Post Route 

124 MHz 

124 

110 

104 

73 

72 

72 

7 1 

68 

n/a 

n/a 

n/a 

n/a 

n/a 

n/a 

n/a 

n/a 

n/a 

n/a 

n/a 

n/a 

n/a 

n/a 

n/a 

n/a 
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Table 6. ACT 3 (standard speed) Family Design Adder Pelformance (Continued) 



Component Instantiation 

Components are a method of introducing structure in a VHDL 
description. A component represents a structural module in a design. 
Using components it is possible to describe a netlist in VHDL. 

Basic Componen t lnstan tiation 
Components are instantiated in the dataflow environment. Example 7 
is an example of a structural VHDL description where a 2 bit RAM is 
instantiated as a design: 

ent i ty  example-ram i 8  

port ( addr : i n  bit-vector(1 downto 0); 
din : i n  bit-vector(1 downto 0); 
wr-en : i n  bit; 
dout : out bit-vector(1 downto 0) ) ;  

end example-ram; 

architecture dataflow of example-ram i s  

caponent RAM16x4 
port ( we : i n  bit; 

aO, a1 : i n  bit; 
do, dl : inbit; 
qO, ql : out bit ) ; 

end caponant; 

begin 
UIOO : ~ 1 6 x 4  port map ( we => wr-en, 

a0 => addr(O), a1 => addr(l), 
do => din(O), dl => din(l), 
qO => dout(O), ql => dout(1)); 

end dataflow; 

Example 7. Simple Macro Cell Instantiation Example 
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User and "Soft Macro" components can be instantiated in the same 
manner. By defining the port list in a C-orient statement and 
instantiating the component in the port map statement any user 
defined macro can be used in a VHDL design. 

Technology Independent Component Instantiation 
To implement a technology independent top level VHDL description 
a designer only needs to create a subdesign, with equivalent ports and 
functionality using generic VHDL constructs. Then, during 
technology speciJic mapping, replace the generic code with the 
technology specific component netlist. 

Actel Library Cell Instantiation 
Example 8 is the format used to instantiate a low-level gate like an 
Actel Library Cell: 

component HCLKBUF port ( 

PAD : i n  bit ; 
Y : out bit ; 

end component; 

UO : HCLKBUF port map ( PAD=>HCLK-P, Y=>CLK ) ;  

Example 8. Actel Library Cell Instantiation Example 

Where, HCLKBUF is an Actel ACT 3 family high-speed, high drive, 
low skew clock buffer. UO is the instance name, and HCLK-P and 
CLK are the nets connected to pins PAD and Y, respectively. 



Component Instantiation 

Using 'XCTgen " Macros In Your Design 
The ACTgen structured macro builder is an Actel Tool that can create 
macros which can be instantiated in VHDL designs for synthesis 
using Design Compiler. These macros are defined in a high level 
language from which an EDIF netlist is created. The goals of the 
ACTgen macro builder is to create flexible library elements that 
efficiently use the Actel architecture to achieve optimal performance, 
minimal module count and improved designer productivity. 

ACTgen/Synopsys Design Flow 

Currently, ACTgen generates counters, registers, adders, decoders, 
and multiplexers. Many more functions are being added with each 
release. Consult the ACTgen Macro Builder User Guide for a current 
listing. To integrate an ACTgen generated component into the VHDL 
design, a few simple step must be followed: 

1. Invoke ACTgen, set the CAE system to generic. 

2. Select Actel family, macro function and parameters. 

3. Generate the macro (output sent to EDIF file). 

4. Read EDIF file into Design Compiler, write as *.db 

5. Identify function port names and directions 

6. Instantiate component into design 

7. Modify script to read (*.db or *.vhdl) 

The design flow is described in Figure 16. 
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Set CAE system to generic 

Specify macro parameters 

edifout 

Modify scripts + r 

f Compile 'I 

Figure 16. ACTgenISynopsys Design Flow 



Component Instantiation 

lnstantiation 
Input and output buffers are automatically inferred. The following 
scripts must be set prior to optimization in order to perform I/O buffer 
mapping with Design Compiler or dc-shell. 

s e t g o r t - i s g a d  al l- inputs0 
se tgort - ingad all-outputs0 
setgad- type al l- inputs0 
setgad- type all-outputs0 
setgad-type -clock CLK 
insertgads 

Where, CLK is an example port name. 

These scripts will cause Design Compiler to map all I/O ports 
specified to an Actel 110 buffer. The clock function, described in the 
VHDL design file, will be mapped to a CLKBUF. After each switch is 
set, messages appear showing the corresponding switch function 
being implemented for applicable 110 ports, as shown in the example 
below: 

Performing s e t g o r t - i s g a d  on port ' i n l '  
Performing rretgort-isgad on port 'out la  
Performing setgad- type on port ' i n l l  
Performing setgad- type on port * o u t l l  
Performing setgad- type on port 'CLK1 

Where, inl, out1 and CLK are examples of port names. 
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A simpler way of applying LIO buffers is by using the script, 

setsort-isgad <design-name> 

Which places an INBUF on an input, OUTBUF on an output and 
CLKBUF on a clock line. 



Most F requen fly Asked Questions 

Where do I install the Actel/Synopsys libraries and how do I read 
in the libraries? 

The libraries may be installed anywhere on the system and the 
following path should be specified in the .synopsys-dc.setup file: 

target-library = -synopsys/library/actXX_31.db; 
symbol-library = -synopsys/library/actXXsym.sdb; 
link-library = -synopsys/library/actxx_3l.db; 
read -synopsys/library/actXX-3l.db; 

Where, XX = 1,2,3 are the actel family pointers, (e.g. n=3 specifies 
ACT3), and -synopsys/library is the directory where the libraries 
have been installed. If the libraries are installed at a different location, 
the library path should be modified accordingly. 

What scripts do I need to set for generating an Actel specific EDIF 
netlist 7 

The following scripts have to be specified in the .synopsys-dc.setup 
file in order to generate an Actel specific EDIF netlist: 

edifout-no-array = true 
edifout-netlist-only = true 
edifoutqower~and~ground~representation = cell 
edifout-ground-name = GND 
edifoutqower-name = VCC 
edifout-groundqin-name = Y 
edifoutqowerqin-name = Y 
edifoutqrettyqrint = true 
read-array-naming-style = "%s<%d>" 

Does Acfel support backannotation in Viewlogic's Viewsim? 

Actel is still in the process of testing this flow for backannotation. 
However, several customers have successfully backannotated to 
Viewsim. An outline of the necessary steps for backannotation, upon 
completion of place and route, are: 
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Generate a WIR file using, 

edifneti <design-name>.edn 

The wir files are placed in the WIR subdirectory of the primary 
design directory. If you wish to generate schematics for the design, 
use 

viewgen <design-name> 

Then generate a vsm file using, 

del2vl <design-name> 

What scripts do I need to set for Actel specific EDlF netlist 
generation for back annotation? 

Using the ungroup command for flattening the design is recommended 
for an optimal design. However, this puts /'s in instance names in the 
Synopsys generated EDIF file, which is mistaken as a level of 
hierarchy during the Actel design flow. In order to avoid such 
confusion, the following scripts should be used for EDIF generation. 

Using Viewsim, a Viewlogic simulator, the following scripts should 
be set in Design-Analyzer or dc-shell for EDIF generation: 

define-name-rules CAPS -allowed "A-Z 0-9 -" 
change-names -rules CAPS -hierarchy 

This will capitalize all instance names in the EDIF file, thereby 
avoiding any conflicts that might occur due to the case of the 
alphabets. 

define-name-rules RESl -restricted ' / "  -replacement-char '-" 
change-names -rules RESl -hierarchy 
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This script will replace all /'s with -'s in instance names since /'s 
might be mistaken as a level of hierarchy at some stage of the design 
flow. The same script can be used for replacing Ys with another 
character. 

I want to change the maximum fanout on my design. It currently 
limits me to 16 but I want to reduce it, 

By default, the ACT1 library fanout limit is set to 10 and the ACT 2 
and ACT 3 is set to 16. The maximum fanout can be changed for the 
design using the "~et-nmc-ianout" script. However, the new fanout 
limit should not be applied to the clock buffer network. This is 
accomplished using: 

Design Compiler will always choose the most restrictive!!! 

I specify my max fanout to be n. However, this limit is ignored for 
logic blocks that have the dont-touch attribute. Why does 
Synopsys ignore this design rule? How can I force Synopsys to 
obey this design rule? 

The following suggestion should address this problem: 

Remove the aont-touch attribute on the blocks which do not obey the 
fanout constraints. Specify the max fanout at the top level using the 
set-w- ianout  script. Then perform an incremental compile at the 
top level using: 

compi le  -only-design-rule 

Consequently, compilation will follow the design rules (for example, 
set---fanout) and individual blocks will not be recompiled. 
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The read-array-naming-style script USBS < > instead of () for array 
notation. When I write out script files while characterizing, the 
script files have < > instead of 0. Synopsys cannot read in script 
files with < > for array notation. Synopsys can only read in 0. 
What can I do? 

The read-array-naming-style script reads in VHDL which has [ ] for 
array notation and converts them to < >. If you are characterizing 
your blocks and writing out script files, this switch writes < > for 
arrays in the script files. However, Synopsys cannot read script files 
which use < > for array notation since the m a y  terminology has to be 
[ 1. In order to successfully read in the script files after 
characterization, the < > array terminology has to be changed to [ ] 
before the script file is written, using the following scripts in 
Synopsys version 3 . 0 ~ :  

define-name-rules ARRAY -restricted '<" -replacement-char ' [ "  
definegame-rules ARRAY -restricted ">" -replacement-char ' 1 "  
change-names -rules ARRAY -hierarchy 

The following script will list the rules being applied, 

report-name-rules ARRAY 

These scripts will ensure that the script files are written out with [ I  
rather than < > for array notation. 

Why do some of the ACT2 and ACT3 macros have "aont-use" 
attribute attached to them and how do I remove this attribute? 

The "aont-use'' attribute has been attached to several ACT2 and 
ACT3 sequential macros that use one sequential and one 
combinational logic module. These two module macros are 
considered inefficient compared to others in the library. 

The "aont-use" attribute can be removed by using the 
"ramovs-attribute" command. 
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How do I translate from the Synopsys to the ALS environment? 

After optimizing and flattening the design (using the unoroup 
command) in the Synopsys environment, and setting the appropriate 
EDIF scripts in the .synopsys-dc.setup file, 

An EDIF netlist from Synopsys is generated by executing the 
following command: 

write -f edif -0 <design-name>.edn <design-name> 

The EDIF netlist, <design-name>.edn, is converted to an Actel 
specific netlist, <design-name>.adl, file using the program, cae2adl. 
The syntax for invoking the command is: 

caeladl -edn2adl fam:<value> ednin:<edif netlist filename>.edn 
NObad0rigName:T <design-name> 

where, 

fam 

ednin 

is the family type, either ACT 1, ACT 2 or 
ACT 3 

is the EDIF file to be converted, which must 
be <design-name>.edn 

NObad0rigName:T ensures that the Edif name is used by the Actel 
suite of programs if the original name is not 
completely legal. 

<design-name> is the name of the design. 

Note A successful generation of the <design-name>.adl file will create two 
additional files in the <design-name> directory: <design-narne>.crt 
and <design-name>.ipf. 



Invoke the Actel suite of programs by typing, 

als <design-name> (version: ALS 2.3) 
designer (version: Designer for X-Windows) 

from the <design-name> directory. 

How do I assign pins to my design? 

The Actel place and route suite of programs offer fully automatic pin 
assignment, logic assignment, and routing. However, the user has the 
capability of manual pin assignment. This procedure is described in 
the Designer Series user guide. 

I have optimized my design and generated an ad1 netlist using 
EDN2ADL, but when I try to use Pin Edit, an error stating "bad 
checksum, certify the <design-name>.ipf file" is issued. 

This problem occurs when the top level of hierarchy described in the 
HDL is not the same name as the directory in which the EDIF netlist 
exists as well as the <design-name> specified in the EDN2ADL 
command. For example, if the top level entity in the HDL is dma, 
then the EDIF netlist and HDL for the design, dma, must reside in a 
directory named, dma, and the <design-name> specified in the 
EDN2ADL statement must be dma. 

After making design changes and regenerating a netlist, Actel 
no longer recognizes my <design-name>.ipf file. Why? 

Only if users have changed their primary LIO names will they need to 
follow the instructions below: 

Users who have completed their board design need to fix pins on their 
chip. This fixed pin information is saved in the <design-name>.ipf 
file. After every design iteration a new edif netlist, 
<design-name>.edn, is created. Consequently, a new 
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<designgame>.ipf file has to be created since there will be 
mismatches between the old <design-name>.ipf and new 
<design-narne>.edn. The <designgame>.ipf file will not 
automatically update itself to match the new edif netlist. 




