
Synopsys VHDL Methodology Handbook
A Book of Hints and Tips

Actel/Synopsys VHDL
Methodology Handbook

A Book of Hints and Tips

Actel Corporation, Sunnyvale, CA 94086
O 1995 Actel Corporation. All rights reserved.

Part Number: 5 172029-0 February 1995

No part of this document may be copied or reproduced in any form or by any means
without prior written consent of Actel.

Actel Corporation makes no warranties with respect to this documentation and
disclaims any implied warranties of merchantability or fitness for a particular purpose.
Information in this document is subject to change without notice. Actel assumes no
responsibility for any errors that may appear in this document.
This document contains confidential proprietary information that is not to be disclosed
to any unauthorized person without prior written consent of Actel Corporation.

Trademarks
The Actel logo, Action Logic, ACT, ACTmap, and ACTgen are trademarks or
registered trademarks of Actel Corporation.

All other products or brand names mentioned are trademarks or registered trademarks
of their respective holders.

Table of Contents

1 ActelISynopsys VHDL Methodology
. Handbook Overview 1

. Common Problems Addressed 2

. Methodology Handbook Stasis 2
Prerequisites . 3

. Synthesis and Actel 3
In This Manual . 4

. 2 Summary of Hints and Tips 5
. Simulate Before Place and Route 5

. Know the DeviceFamily Resources 5
. Use Scripts Properly 6

. Use Design Constraints 6
. Using Actel's TDPR 6

. Use "Case" When Possible 7
. Use ACTgen for Structured Macros 7

3 Overview of Actel Device Families 9
. ACT 1 Family 9

. ACT 1 Logic Resources 10
. ACT 1 VO Resources 12

. ACT 1 Special Resources 12
. ACT 2 Family 13

. ACT 2 Logic Resources 13
. ACT 2 VO Resources 15

. ACT 2 Special Resources 16

. ACT 3 Family 17
. ACT 3 Logic Resources 17

. ACT 3 110 Resources 18
. ACT 3 Special Resources 20

. Mapping and Combinability 20
. Speed Grades and Timing Characteristics 22

. 4 Tips Using Synopsys Design Compiler 23
. Setting Proper Design Constraints 23

Grouping Paths for Maximum Delay 26
. Setting the Area Constraint 26

. Why Set Constraints 27

. Effectively Using Scripts 27
. Effectively Using Hierarchy 28

Characterizing the Subdesigns to the Parent 28

Using Global Signals and Special Resources 29
. Using ACT 3 I10 registers 29

Running ALS from Within Design Compiler 31

Verifying Synopsys Performance with ALS 32

. 5 Hints On Designing with Synopsys VHDL 33
. General State Machines Description 33

. State Machine Design Hints 35
. State Encoding 37

Extracting an FSM from a Sequential Design 37
. Read Design 39
. Map Design 39
. Group FSM 39

Extract FSM . 40

Optional FSM Optimization Styles 41
Using One-Hot Encoding Strategy 42

. Manual One Hot State Encoding 44

. Automatic FSM Encoding Styles 44
. Power-up And Reset 45

. "If-then-else" Versus "Case" 46
. Arithmetic Elements And Designware 3.1+ 46

. Designware 3.1 Performance (Post Routed) 47

. 6 Component Instantiation 49
. Basic Component Instantiation 49

. Technology Independent Component Instantiation 50
. Actel Library Cell Instantiation 50

. Using "ACTgen" Macros In Your Design 51
. ACTgen/Synopsys Design Flow 51

. I/0 Instantiation 53

. 7 Most Frequently Asked Questions 55

Acfel/Synopsys VHD L Methodology
Handbook Overview

VHDL is a high level description language for system and circuit
design. The language supports various levels of abstraction. At higher
levels of abstraction the user can conceptually design a system
without regard to a specific technology. Traditionally, only when the
system (design) is functioning and validated through high level
simulation does a designer need to consider a specific target
technology (Figure 1).

Note The code is translated to RTL code- not to be confused with behavioral
code. It is the desire of designers to keep technology specific code to a
minimum. In this way, a designer may migrate from one technology to
another while keeping source code changes to a minimum.

Top-Down Design Flow

11 Translate to Behavior

I Physical
Implementation

Figure 1. Top-Down Design Flow

Chapter l

In general, designers write their code very generic and hope that the
design tools will ultimately make smart technology specific choices.
This method works, but to get the most optimum performance (read:
high speed) from your devices some things must be considered. It is
those considerations and trade-offs that will be covered in this
manual. It is also the focus of this manual to provide the designer
with enough insight (hints) to be able to make trade-offs when coding
their system (or design). A selection of trade-offs will be listed. A
designer, depending on how much they're pushing the density or
performance envelopes, may choose to employ none, some, or all of
them. Some considerations are subtle, some obvious, some
technology specific, and some technology independent.

Common Problems Addressed
The classic problem that we, at Actel, see is a designer debugging
Actel devices before the technology independent simulations are
complete. If your simulation strategy does not support this
methodology this manual will try and lessen the cycle time. This will
be achieved by recognizing the special resources available in each
device family and properly using them.

Methodology Handbook Stasis
This document is meant to be a "living" document and by no means
the "know-all" repository of all Field Programmable Gate Arrays
(FPGA) specific hints. If you have examples and guidelipes that have
worked for you please pass them on to Actel by e-mailing them to
tech@actel.com or FAXing them to (408) 739-1540.

Actel/Synopsys VHDL Methodology Handbook Overview

Prerequisites
This manual is NOT a VHDL tutorial! Knowledge of the basic
constructs of VHDL is assumed. If you need more details, training in
VHDL and top-down design in general is available from a number of
different sources. Even though knowledge of the Actel, Action Logic
System (ALS), design suite is recommended (but not required) be
sure to have an Actel Data Book and Macro Library Manual handy.

Also required is access to Synopsys Design Compiler Version. 3.1 +
with Actel Technology Libraries (Version. 3.1).

Note Some enhanced features available with FPGA Compiler are NOT
available in Design Compiler. These features can (and will) affect
maximum density and performance. If you have Design Compiler it
may not be necessary to obtain a license for FPGA Compiler if the
results obtained meet the design constraints. Also, throughout this
manual Design Compiler is used to denote the complete set of
Synopsys tools (Design Analyzer, FPGA Compiler, VHDL
Compiler, etc.)

Synthesis and Actel
In general, technology mappers want one thing-small homogenous
building blocks. It is for that reason that most ASICs are mapped
reasonably well when it comes to speed and density. The basic
building block is typically an equivalent of a 2 input NAND gate.
Also, the ASIC interconnect is a metal-to-metal "via" that doesn't
represent a significant amount of the circuit delay. Therefore the
mapper can produce less than optimal solutions and the ASIC
technology will be much more forgiving. FPGAs, on the other hand,
are much less forgiving. Yes, it is true that the tools have dramatically
improved recently, but an FPGA design that pushes either the speed
or density envelope will require more consideration.

Chapter 1

Actel, unlike any other leading FPGA manufacturer, makes devices
that have small homogeneous building blocks. This makes for easier
coding and fewer technology specific considerations. Ultimately you
want the synthesis tool to achieve near the schematic performance
with the ease of high-level design. With Actel it will be shown that
this is possible.

In This Manual
Chapter 2: Summary of Hints and Tips covered in this manual.

Chapter 3: Actel device architectures is discussed here to
familiarize the user with the resources available.

Chapter 4: Covers tips on using Synopsys Design Compiler.

Chapter 5: Some VHDL constructs and styles will be covered.

Chapter 6: Covers basic cell instantiation.

Chapter 7: A compilation of Actel's most commonly asked
questions about the SynopsysIActel technology kit.

Summary of Hints and Tips

Below is a summary of the hints and tips covered in this manual. To
see more detail on each hindtip please refer to the associated chapter.

Simulate Before Place and Route
In Chapter 1, high-level technology independent simulation was
discussed (see Figure I). In general, the cycle time from EDIF netlist,
place/route/timing-extract to back-annotated timing can be anywhere
from thirty minutes to two hours. It is our experience, here at Actel,
that designers spend many unnecessary hours in this loop before the
design has been "wrung-out". We believe that only after the designer
has successfully proven the functionality should the device be
mapped. As stated earlier, if the designer's current simulation strategy
does not support this then this manual will try to lessen the cycle time
by providing helpful hints before the design starts.

Know the Device/Family Resources
Another observation by the team, here at Actel, is the improper usage
of the special resources available in each family (refer to Chapter 3).
It is through these resources that designers can realize fast, compact,
and reliable designs. See Chapter 4 and Chapter 6 for more details.

Use Scripts Properly
Another common mistake is not using Design Compiler's scripts
properly. It will be shown in Chapter 5 that without modifying the
source VHDL code the state machine order, encoding style and
optimization parameters can be modified.

Use Design Constraints
As discussed in Chapter 4, it is most important that Design Compiler
knows the design goals. Also, remember it is just as important to
identify what is not critical as well as what is.

Using Actel's TDPR

In the near future, Actel will be releasing a Timing Driven Place and
Route (TDPR) tool. Synopsys design constraints will automatically
be converted from Synopsys format to Actel format. It makes it even
more imperative to use proper, complete design constraints.

Summary of Hints and Tips

Use "Case " When Possible
In Chapter 5, it will be suggested that the designer use case
statements instead if long nested if -then-elm. The reasoning is
two-fold;

1. Case statements are compared to a single vector. In general, this vector
can be thought of as the "select" inputs to a multiplexer. Actel FPGAs are
built on multiplexer technology (see Figure 3 and Figure 5). It is a natural
fit to use muxes when possible.

2. Case statements force structure to complex decoding situations.
~f -then-alee's do allow maximum flexibility but they may not produce
compact logic. It has been our experience, here at Actel, that on
numerous occasions (incorrectly coded) complex i f -then-else

statements were the cause of some logic (state-machine) problems.

Use ACTgen for Structured Macros
In general, ACTgen uses the Actel technology the most efficiently. It
was this technology that was used to construct the DesignWare
libraries (Chapter 5). But, for macros not automatically inferred by
DesignWare ACTgen will should be used as the designer's most
effective path to high-density, high-speed design.

Chapter 2

Overview of Actel Device Families

Currently, Actel FPGAs are antifuse based. Actel is the home of
antifuse technology. Technically the type of interconnect technology
should not matter to the synthesis user. This would be true if the type
of interconnect did not dictate the architecture (which is of some
concern to the synthesis user). Physically antifuses are a two-terminal
via type device. They are small (they reside underneath the routing
lines) and have minimal impedance. The small area and low
impedance allows Actel to build devices with a structure similar to
channeled gate arrays (lots of small "simple" building blocks with an
abundance of routing). This in turn allows the synthesis user to be less
concerned with device architecture and more concerned with coding
hints and resource types available.

The following data is covered in detail in the Actel data books. The
intent of this section is to familiarize the VHDL designer with Actel
specific features and resources of each device family.

ACT 7 Family
The ACT 1 family represents Actel's first generation of FPGAs.
Currently, there are two devices available (Table 1). An ACT 1 device
is structured much like a channeled gate array (Figure 2). Logic
modules (logic resources) are distributed in an X,Y array surrounded
by I/O modules (I10 resources). All logic and VO resources are
identical in structure. The only exception is the clock module.

Table I . ACT 1 Family Projlc

Device Gates Module RegiPtcrs User U0

odule

lule

Chann

Figure 2. Channeled Gate Array Overview

ACT 1 Logic Resources
The ACT 1 logic module is an 8-input, one-output logic circuit
chosen for the wide range of functions it implements and for it's
efficient use of interconnect routing resources (Figure 3).

This logic module can implement the four basic logic functions
(NAND, AND, OR, and NOR) in gates of two, three, or four inputs.
The logic module can also implement a variety of D-latches,
exclusivity functions and complex AND-ORs type functions. No
dedicated registers are available in the array. Instead registers are built
with two latches configured as a master-slave (hence the register
count is half that of the module count-Table 1).

Overview of Actel Device Families

Figure 3. ACT 1 Logic Module (Logic Resource)

Chapter 3

ACT I l/O Resources
Each UO pin is available as an input, output, three-state or
bi-directional buffer (Figure 4). Input and output levels are
compatible with standard IITL and CMOS specifications. See
Electrical Specifications in the Actel data book for additional UO
buffer specifications.

Figure 4. ACT 1 I/O module

ACT I Special Resources

Each ACT 1 type device has a single high drive, low skew clock
buffer (CLKBUF). This is treated as an UO module that can drive
many internal loads. This resource may derive it's source from within
the array. When used in this manner an UO pin must be used in
conjunction with a special resource (CLKBIBUF). This is essentially
a bi-directional buffer (Figure 4) with the output (Y) connected to the
clock network. The regular clock buffer (CLKBUF) is the same
device with the D and E inputs disabled.

Overview of Actel Device Families

ACT 2 Family
The ACT 2 family represents Actel's second generation of FPGAs.
Currently there are three devices available (Table 2). Like ACT 1, an
ACT 2 device is structured much like a channeled gate array. Logic
modules (logic resources) are distributed in an X,Y array surrounded
by VO modules (110 resources). The ACT 2 family's logic resources
come in two styles. The VO have been enhanced with bi-directional
latches. There are two clock networks on each device of the ACT 2
family.

Table 2. ACT2 Family Profile

Device Gates Module Registers User I/0

ACT 2 Logic Resources
The ACT 2 logic resources are classified into two types:
combinatorial (C-modules) and sequential (S-modules). The ACT 2
C-module (Figure 5) is an enhanced version of the ACT 1 style
module and can now implement up to 5 input functions.

Chapter 3

Figure 5. ACT 2 C-module (Logic Resource)

The S-module (Figure 6) is designed to implement high-speed
register functions within a single logic resource. The S-module is
configured as a C-module followed by a storage element, either a
D-type register or latch. The storage element can be disabled by
configuring the storage element as a latch and permanently enabling
it. Likewise, the combinatorial logic can be disabled by connecting
the select inputs to zero and bringing data in through a mux input.
Notice the CLR and SO1 inputs share a pin. This affects
combinability.

Synopsys Design Compiler takes full advantage of the S-module.
This is essential for fast, compact designs.

Note The S-module storage element's clear input is active low only!

Overview of Actel Device Families

Figure 6. ACT 2 S-module Implementations (Logic Resource)

ACT 2 1/O Resources
The ACT 2 I/0 resource is an enhanced version of the ACT 1 I/O
module (Figure 7). In addition to each I/0 pin as an input, output,
three-state or bi-directional buffer a latch is available on both input
and output. This latch can be combined with a second latch within the
array to construct registered inputs and outputs (for faster input set-up
and clock-to-out times). Input and output levels are compatible with
standard TTL and CMOS specifications. See Electrical Specifications
in the Actel data book for additional I/O buffer specifications.

Chapter 3

GIN JFf
Figure 7. ACT 2 I/O module

ACT 2 Special Resources
Each ACT 2 type device has two high drive, low skew clock buffers.
There are treated as I/O modules that can drive many internal loads.
Unlike the ACT 1 version, the ACT 2 clock buffers need not use an
external I/O pin when driving an internal load. The internal clock
(CLKINT) is used in this case.

Overview of Actel Device Families

ACT 3 Family
The ACT 3 family represents Actel's third generation of high
performance FPGAs. Currently there are five devices available
(Table 3). Like ACT 1 and ACT 2, an ACT 3 device is structured
much like a channeled gate array. Logic modules (logic resources) are
distributed in an X,Y array surrounded by I/O modules (LIO
resources). Like ACT 2, ACT 3 family's logic resources come in two
styles. The I/O have been enhanced with bi-directional registers with
a dedicated VO clock for fast Clock-to-Out times (elOns) and low
input set-up times. A special high-speed clock network (HCLK) has
been added in addition to the two clock networks identical to the
ACT 2 family.

Table 3. ACT3 Family Projle

Device Gates Module Registers User I/0

A1415 1500 200 >I04 80

A 1425 2500 3 10 >I60 100

A 1440 4000 564 >288 140

A 1460 6000 848 A 3 2 168

A14100 loo00 1377 >697 228

ACT 3 Logic Resources
Like ACT 2, the ACT 3 logic resources are also classified into two
types: combinatorial (C-modules) and sequential (S-modules). The
C-module is exactly like the ACT 2 C-module (Figure 5). The ACT 3
S-module (Figure 8) is an improved version of the ACT 2
S-module.

Chapter 3

CLR I

Figure 8. ACT 3 S-module Implementations (Logic Resource)

The ACT 3 S-module has a separate CLR input. This allows all
combinatorial functions (C-modules) that are followed by a simple
data storage element to be combinable.

ACT 3 1/O Resources
Like ACT 2, ACT 3 I/Os perform simple buffer configurations. In
addition, a high-speed register is available on both input and output
for very fast input set-up and clock-to-out times (Figure 9). The data
input may be derived from the output register output or directly from
the pad (Figure 10). Input and output levels are compatible with
standard TTL and CMOS specifications. See Electrical Specifications
in the Actel data book for additional I/O buffer specifications.

Overview of Actel Device Families

IOCLK

PREICLR

D- D
ODE 4

IOCLK -

Figure 9. ACT 3 110 module (with bi-directional registers)

D

ODE
IOCLK

Y i

ODE

PREICLR

Q -
PAD

-D Q Y
PAD

4 ODE
-

Y

Figure 10. ACT 3 VO module (registered with dual feedback)

Chapter 3

ACT 3 Special Resources
Each ACT 3 type device has 4 special I/O resources. Use of these is
key to compact, high-speed and reliable designs. Like ACT 2, an
ACT 3 device has two high drive, low skew clock buffers (CLKBUF).
These special I/O buffers need not use an external I/O pin when
driving an internal load. The internal clock (CLKINT) is used in this
case. In addition, there is a very high-speed clock buffer network.
(HCLKBUF). This clock buffer should be used for signals faster than
75 MHz. The I/0 registers (Figure 9 and Figure 10) use a dedicated
UO clock (IOCLKBUF) and resetlpreset network (IOPCLBUF).

Note Synopsys Design CompilerV3.1+ will automatically use the I/O
registers where ever possible. There are some limitations. See
Chapter 4 for more details.

Mapping and Combinability
Actel FPGAs have a simple combinatorial building block used to
construct from simple to complex functions using mapping. For
example, in Figure 11 one of the many possible mappings of a three
input AND (AND3) gate is shown. Logic that can fit in an ACT 2 or
ACT 3 C-module (Figure 5 on page 14) with an output load of 1 and
followed by a simple storage element is called combinable
(Figure 12). This eliminates one level of logic (delay) and doesn't
increase logic resources used (logic is already in front of S-module).
In ACT 2 there is an exception. If the C-module logic must use both
of it's local AND gate's inputs to synthesize the desirable function
then this function can not be combined. Synopsys Design Compiler
3.1+ resolves this by using DFM7x's and DFM8x's (complex
flip-flops) for ACT 2 and ACT 3 respectively.

Overview of Actel Device Families

Figure I I . One

9

(of many) AND3 Mappings

CLK CLK

CLR

Figure 12. Combining of C-mod and Simple Register

When doing timing analysis or simulation, this reduced level of logic
will represent no delay, To keep the timing characteristics coherent,
ALS will back-annotate 0 ns for the combined function block into the
simulator or the ALS timing tool (timer).

Chapter 3

Speed Grades and Timing Characteristics
All Actel Device families come in multiple speed grades. A standard
part represents a device that meets the minimum family timing profile
(see data book). A part with a '-1' modifier is a device measured
during the device sorting process to be 15 percent faster, a '-2' is 25
percent faster, etc. Actel uses worst case derating to specify device
timing (worst case voltage, temperature, and process) in the data book
and ALS software. If the designer is using the Design Compiler's
default typical derating factor then all timing numbers must be
divided by 1.25. For example, if the worst case performance of a
device is 30 MHz (33.33 ns) then to derate for Design Compiler, at
typical derating, in multiple speed grades is:

a) 33.33ns / 1.25 => 26.67ns (derate from typical to worst case)

b) for '-1' (15% faster device) - 26.6711s * 1.15 => 30.67ns

c) for '-2' (25% faster device) - 26.67ns * 1.25 => 33.33ns

d) for '-3' (35% faster device) - 26.67ns * 1.35 => 36.001-1s

Example 1. Sample Derating Calculations

Tips Using Synopsys Design Compiler

It is our experience, here at Actel, that the most commonly under
utilized group of commands are constraints. Constraints are used
identify what your design goals are.

Setting Proper Design Constraints
Constraints refer to measurable circuit characteristics such as area
and timing. Design Compiler calculates design area and path delays
using the area and timing values from the Actel technology library.

There are two kinds of constraints: design-rule constraints and
optimization constraints. In general, design-rule constraints reflect
technology-specific restrictions that must be met for a functional
design, (such as maximum loading on a net). Optimization
constraints represent design goals that are desirable, but not crucial,
to the operation of a design (such as the desired maximum circuit area
or delay). Design Compiler tries to meet both types of constraints but
gives emphasis to design-rule constraints, as they are requirements
for a functional design.

Design Compiler uses constraints to guide optimization and
implementation of a design. Constraints define the goals of the
synthesis process. Design Compiler tries to meet these goals when
synthesizing a design.

Design Compiler has a plethora of constraint-based commands. This
manual will only focus on a subset of two types of optimization
constraints: Speed and Area.

Chapter 4

In general, the most important optimization constraint is maximum
delay (max-aeia~). There are four types of delay categories
(Figure 13). They are:

Tcq Clock to Q : This is generally known as the synchronous
speed of the circuit or the register to register delay. These
paths are constrained by specifying the clock(s) for the
registers.

Tsu Set-Up : The delay from the input to valid data at the D-input
of first flip-flop. These paths are usually constrained by
specifying the clock for the register, and setting an input
delay relative to a clock on the input port(IN1).

Figure 13. Four types o f timing paths

- -
CLK

, IN2 OUT2
Logic rn Q- ''o-

Tips Using Synopsys Design Compiler

Tco Clock to Out : The delay from the clock to valid data at the
output port (OUTI). These paths are usually constrained by
specifying the clock for the register, and setting an output
delay relative to a clock on the output port(OUT1).

Tio In to Out : The delay from the input, through logic, then to
the output. These paths can be constrained by setting an input
delay on the input port (IN2), and either an output delay
relative to a clock, or maximum and minimum delay targets
on the output port (OUT2).

For the purposes of simplicity this manual will focus on the register to
register delays. Maximum delay target values for each timing path in
the design are automatically determined after considering clock
waveforms and skew, library setup times, external delays, multicycle
or false path specifications and --delay commands. Load, drive,
operating conditions, wire load models, and other factors are also
taken into consideration.

Design Compiler has a built-in static timing analyzer for evaluating
timing constraints. A static timing analyzer calculates path delays
from local gate and interconnect delays but does not simulate the
design. That is to say, it does not check the design for functionality.
The Design Compiler timing analyzer performs critical path tracing
to check minimum and maximum delay for every timing path in the
design.

Note The most critical path is not necessarily the longest combinatorial path
in a sequential design, since paths can be relative to different clocks at
path start and endpoints. On the other hand, the Actel static timing
analyzer (Timer), included with every ALS system, defaults to check
only for the longest combinatorial paths.

Chapter 4

Grouping Paths for Maximum Delay

Path groups affect the way the maximum delay cost is computed. You
can assign paths or endpoints to named groups. Paths are placed in
groups with groupgath and create-clock commands. For further
detail on the oroup~ath command(s) see Design Compiler Reference
Manual. The following example uses the create-clock command to
create a groupgath with all register to register paths, a delay
constraint of 50ns (20 MHz), 50% duty cycle, and group (signal)
name of cik.

create-clock -period 50 -waveform (0 25) clk

create-clock -period 50 clk

Setting the Area Constraint

The -area command specifies the maximum allowable area for the
current design. Design Compiler computes the area of a design by
adding together the areas of each of its components on the lowest
level of the design hierarchy. The area of a cell is obtained from the
Actel technology libraries. Maximum area is an optimization
constraint and is therefore secondary to design-rule constraints (such
as maximum fanout).

To properly determine the maximum area in a given Actel device
family use the "family profile" tables in Chapter 3. For example, to
constrain a design into an Actel A1280 (ACT 2 family) Table 2
indicates a total maximum area of 1232 modules. Design Compiler
will attempt to meet this constraint.

Tips Using Synopsys Design Compiler

Why Set Constraints
Design Compiler, in many cases, can synthesize and optimize
circuitry with many different configurations. If, for example, the
desired speed was 20 MHz (5011s) but not specified, Design Compiler
may (and will) default to area optimization and possibly provide a
less than desirable result. On the other hand, if the area was overly
restrictive to, say 800 modules in A1280, then Design Compiler may
not have enough room to use a much faster, but larger, version of a
function because it was too large.

When setting constraints, setting the "don't cares" (the slowlstatic
parts of circuit) is just as important (maybe more) than setting the
target speed. In this way, Design Compiler does not use up precious
high-speed resources for circuitry that may be static or control lines.
In summary, setting the design constraints properly is the easiest way
to realize correctly coded designs achieving the systems goals.

Effectively Using Scripts
The power of Design Compiler is it's flexibility through scripts. The
source VHDL code need not be modified at all to achieve from a
small, medium speed, compact design to a much faster, but larger,
design. All throughout this manual you will see references to (design
compiler shell or dc-shell) commands. In the previous section, it
was shown how to set the target clock frequency and target area of a
design. In the following sections it will be shown how, using scripts, a
design can be manipulated to achieve higher performance with a
minimal amount of effort and without changing the VHDL source.

Chapter 4

Effectively Using Hierarchy
Hierarchy in a VHDL design is a form of design partitioning
performed with component instantiation and multiple
entitylarchitecture pairs that define the contents of the components.

Design Compiler supports automatic preservation of hierarchy in
your design. The designer has the choice of either preserving the
block functions or flattening the design at any branch to achieve
group optimization. For example, a design may be fully flattened to
attempt optimization of the complete design as one large block.
Flattening a design may improve area and speed results but the final
output could be hopelessly flattened beyond recognition as
individually traceablelsimulateable blocks.

Characterizing the Subdesigns to the Parent

In Actel devices, local (non-global) net loading directly affects
performance of a given signal path. If only a single net is highly
loaded in a design and this net is the slowest path in a register to
register group then this path will become the critical path (remember,
it is the slowest delay that determines circuit speed).

Hierarchical designs are composed of subdesigns. You can describe
subdesigns independently of the parent design by characterizing or
by modeling (modeling creates a characterized design as a library cell
and will not be covered in this manual-please refer to the Design
Compiler Reference Manual). Characterizing determines a
Subdesign's port timing values, logical connection attributes, and

Tips Using Synopsys Design Compiler

constraints by examining its context in the parent design. The
characterize command automatically derives the boundary condition
of subdesigns on its context in a parent design. Three types of
boundary conditions are computed timing conditions, constraints, and
connection relations.

characterize instance-name / * for example -> "U100" * /

Using Global Signals and Special Resources
Global signals, such as clocks, resets, and enables may be easier to
design using high drive resources such as CLKBUFs and
HCLKBUFs. Each Actel device has at least one and as many as four
high drive resources. The following example will not buffer the reset
line so that a special resource, like CLKBUF may be used.

dont-touch-network find(port, rst)

Using ACT 3 1/O registers

The ACT 3 family of devices from Actel have dedicated registers in
the I/O modules to facilitate fast input set-up times (<I .5ns) and fast
clock to out times (dons) . These resources are not automatically
utilized by Design Compiler, a post-processing step is required. The
following post-processing script (Example 2) is used to instantiate the
special ACT 3 I/O buffers into a given design.

Note Two new ports are created during this process "IOCLK and "IOPCL".
To make sure simulation is coherent, the designer must add them to the
simulation model (vectors).

Chapter 4

/ * create ports IOCLK & IOPCL and instantiate buffer cells * /
createqort IOCLK
create-cell "ioclk" act3/IOCLKBUF
create-net {ioc
1 k-ne t)
connect-net ioclk-net find(port, (IOCLK))
connect-net ioclk-net find(pin, (ioclk/PAD))
createqort IOPCL
create-cell "iopcl" act3/IOPCLBUF
create-net (iopcl-net)
connect-net iopcl-net find (port, (IOPCL))
connect-net iopcl-net find(pin, (iopcl/PAD))

create-net {ioclk-net-out)
connect-net ioclk-net-out find(pin, ioclk/~)
create-net {iopcl-net-out]
connect-net iopcl-net-out find(pin, iopcl/~)

i
/ * to find name of clk net * /
all-connected seecell + /CLK
clock-net = dc-shell-status

/ * find cell names for reference * /

/ * to find name of set/reset net * /
all-connected seecell + /IOPCL
clear-net = dc-shell-status

filter(find(cel1, " * ") , "@refgame == ORECTH-NO-TRI
@ref-name == IREC-SY @ref-name == IREP-SY
@ref-name == ORECTH-SY @ref-name == ORECTL-SY
@ref-name == OREPTH-SY @ref-name == OREPTL-SY
@ref-name == ORECTL-NO-TRI @ref-name == OREPTH-NO-TRI

/ * disconnect this clock net & connect to dedicated net * /
disconnect-net clock-net find(pin, seecell + /CLK)
connect-net ioclk-net-out find(pin, seecell + /CLK)

\
\
\
\

/ * disconnect this reset net & connect to dedicated net * /
disconnect-net clear-net find(pin, seq-cell + /IOPCL)
connect-net iopcl-net-out find(pin, seecell + /IOPCL)
1

@ref-name == OREPTL-SY ")

Example 2. Post processing script for special ACT 3 I/O

Tips Using Synopsys Design Compiler

Note A link library 1ink.v is also required to use this script file. Contact the
Actel Technical Support Hotline to obtain a copy of both scripts at
(800) 262-1060 or e-mail at tech@actel.com.

Running A LS from Within Design Compiler
Actel's ALS tool suite supports simple command line operations that
can be run from within the Design Compiler environment. Design
Compiler has the ability to call UNIX and execute external
commands. This is accomplished through the rh (shell) command.
The following example (Example 3) will run all necessary ALS 2.3
commands to convert Design Compiler EDIF output to ALS format,
validate the design (rule checker), place, route, and then optionally
invoke the Actel static timing analyzer (Timer). For a brief
description of the ALS "Timer".

sh cae2adl -edn2adl fam:act3 ednin:TEST.edn NObad0rigName:T TEST
sh als -set fam act3 TEST
sh als -set die 1460 TEST
sh als -set package qfp208 TEST
sh als -validate TEST
sh als -place TEST
sh als -route TEST
sh als -xtract TEST
sh als -timer TEST < TImR.SCR (optional invoking ofTimer)

--

Example 3. DC-SHELL Script to run ALS from within Design Compiler

Note TEST is the name of the top level design. In the above example, the
design TEST is set to aA1460 (ACT 3) in a QFP208 package. Device,
family and package only have to be set once.

Verifying Synopsys Performance with ALS
The ALS software contains a robust static timing analysis tool called
the Timer. The Timer works on the principle of sets, much like Design
Compiler's groups. The Timer will automatically build default sets
using input buffers, output buffers, and registers. The default group
for timing is register to register delays (using the clock net as a
starting reference port). The following is the contents of TIMER.SCR
from Example 4.

orstop inpads adds input pads to stop paths at borders
orstop outpads adds outputs pads to stop set
longest get longest paths (defaults: Tcq)
expand 0 expand worst path ' 0 '

Example 4. Simple Timer command sequence to extract longest Tcq

Hints On Designing with Synopsys VHDL

In order to determine the most common issues with customer
VHDL-based designs we, at Actel, did a wide study of our customer's
design implementations. State machines construction and custom
arithmetic functions had the highest percentage of recurrence. The
following hints in this section are presented in a technology
independent manner wherever possible.

General State Machines Description
The possible states of the state machine are listed in an enumerated
type. A signal of this type (present-state) defines in which state the
state machine is currently in. In a case statement of one process, a
second signal (next-state) is updated depending on present-state
and the inputs. In the same case statement, the outputs are also
updated. A second process updates present-state with next-state
every clock cycle except when the rst is asserted.

Here is the VHDL code (Example 5) for such a typical state machine
description. This design implements a post food processing unit.

entity food-cycle is
port (clk, rst, switch : in bit;

full, gte-half, empty : in bit;
water, purge : out bit);

end food-cycle;

architecture behavior of food-cycle is
-- define possible states for state machine
type state-type is (reset, uwait, flush, fill, half) ;
signal present-state, next-state : state-type;

Example 5. Food Psot-Processor Unit

Chapter 5

begin
process (RST, CLK) -- registers
begin
if (rst = '0') then
present-state <= reset;

oleif(CLK='l' and CLK'event) then
present-state <= next-state;

end if;
end process;

process(present-state, rst, switch, full, gte-half, empty)
begin -- transitions
case present-state is
when reset => -- reset state

if(rst='ll and full='l') then
next-state <= uwait;

end if;
water <= '1'; purge <= '0';

when uwait => -- wait for button push
if(switch='l') then
next-state <= flush;

end if;
water <= '0'; purge <= '0';

when flush => - - open purge
if(empty='ll) then
next-state <= fill;

end if;
water <= '0'; purge <= '1';

when fill => -- fill water / ignore switch
if(gte-half='l') then
next-state <= half;

end if;
water <= '1'; purge <= '0';

when half => - - cont. fill / examine switch
if(full='l') then
next-state <= uwait;

elsif(switch='l') then
next-state <= flush;

end if;
water <= '1'; purge <= '0';

end case;
end process;

end behavior;

Example 5. Food Psot-Processor Unit (Continued)

Hints On Designing with Synopsys VHDL

State Machine Design Hints

There are various issues of coding style for state machines that might
affect performance of the synthesized result. State machine style can
have the most profound affect on FPGA performance. The following
section will give the designer hints on technology independent coding
styles.

A first issue is the form of state machine that will be created. There
are basically two forms of state machines, Mealy machines and
Moore machines. In general, Moore machines have fewer states than
a Mealy machine. In a Mealy machine, the outputs change during
transitions from state to state. In a Moore machine, the outputs are
derived directly from the present state and the inputs.

To demonstrate this we will use the example of the food
post-processor unit from the previous section. The Moore version is
shown in Figure 14.

Chapter 5

/FULL

WATER

ISWITCH

WATER

/EMPTY

WATER

/GTE-HALF

WATER

/FULL*/SWITCH

WATER

- FULL

- SWITCH

- EMPTY

- GTE-HALF

- /FULL'SWITCH

- FULL

Figure 14. Graphical State Diagram of Example 5

Hints On Designing with Synopsys VHDL

State Encoding

The present-state signal in Example 5 is of a user-defined
enumerated type. There are five values (states) in this type: reset,
uwait, flush, f i l l and half. This means for simulation, present-state

can appear in each of these five states. For synthesis, state assignment
has to be done on a number of state bits to represent each of these
states. By default, Design Compiler implements compact (binary)
encoding. This means that three state bits are needed. Encoding is
done based on the definition of the state type, counting left to right. In
this example, the following state values are assigned to each state:

Table 4. Compact Encoded State Bits

state state-bits 012

reset

uwait

flush

fill

half

If you require different binary encoding values for each of the states,
you must change the order of the enumerated type accordingly.

Extracting an FSM from a Sequential Design

Why does an FSM need to be extracted? So Design Compiler can
know which registers are to be optimized as that FSM. In this way,
the designer may changed encoding styles or simply let Design
Compiler choose use the auto command.

Figure 15 show the flow from a design or netlist to a Finite State
Machine (FSM). Each step is shown with the relevant Design
Compiler commands. Optional statements are shaded.

There are two classes of state machines design that must be
considered. When the entire design is the state machine or when the
state machine registers are buried within the context of a larger
design. The complete flow must be followed for the latter case.

Read Design

Mape Design

Extract FSM
extract F

Figure 15. Extracting a Finite-State Machine From a Design

The following steps will be required to extract and optimize this
design.

Hints On Designing with Synopsys VHDL

Read Design

Read the design into Design Compiler with the appropriate read
command. For example, to read Example 5:

read -format vhdl food-cycle.vhd

Map Design

If the design is not mapped, run c-iie to map the design to gates:

cornpile -map_effort low / * map-effort shown is optional * /

Group FSM

If the entire design is a state machine, this step is optional. Grouping
the FSM part of a circuit produces a new level of hierarchy containing
just the FSM state vector flip-flops and their associated logic. The
new design is still in netlist format. The next step is to extract the
FSM information to create an FSM representation.

If not all flip-flops in the design are part of the state machine, use the
set-fnm-state-vector command to name the FSM state vector
flip-flops:

set-fsm-state-vector (reset-reg, uwait-reg,)
use the group -fsm command to group the subset of the design that
includes just the FSM flip-flops and their associated logic into a new
level of design:

group -fsm -design-name food-cycle-fern

Finally, move down into the FSM part of the design by setting the
current-design variable to the new FSM name:

current-design = food-cycle-fsm

Chapter 5

Extract FSM

Extracting an FSM from a circuit changes the representation from a
netlist format to FSM state-table format. Consult the Design
Compiler Reference Manual for specific optimizations that can be
supplied. This section will only cover binary and one-hot encoding
methods.

First, set the order of the state vector flip-flops with the
set-fsm-state-vector command. The order of the flip-flops must
agree with order of the state vector bits, that is, each bit in the state
vector represented by one flip-flop in order:

set-fsm-state-vector { reset-reg, uwait-reg, ... }
Next, you can optionally set the state encoding with the
set-f sm-encoding command (see Design Compiler Reference Manual
-EfJicient FSM Extraction). State encoding tells Design Compiler
the names and values of each state:

set-fsm-encoding {"reset=O","uwait=2",....}

Extract the FSM (convert the circuit into an FSM):

extract

You can optionally use the reduce-fsm command to minimize the
state-transition logic:

reduce-fsm

Hints On Designing with Synopsys VHDL

Optional FSM Optimization Styles

Now that the design is optimized and represented internally as a state
table, we can optimize for a different coding strategy. In this case, we
will choose one-hot. First, re-extract design and then set new strategy
as follows:

/ * re -extract * /
set-fsm-state-vector (reset-reg, uwait-reg,...)
set-fsm-encoding (nreset=On,nuwait=2~,...)

Set FSM Order

To manually define the ordering of states and have Design Compiler
automatically number the state vectors in binary or gray encoding:

set-f-order (reset, uwait, flush,. ..)
set-fsm-encoding-style gray

set-fsm-encoding-style binary

Use One Hot Encoding

To use one-hot encoding and to have Design Compiler automatically
generate the state vectors for a very fast FSM, where only one bit per
state is used:

set-fsm-encoding-style one-hot

Re-Optimize New FSM Design

Now we re-optimize the FSM design, minimize and compile:

set-f sm-minimize true
compile

Pop back a hierarchy level to write the design:

current-design = food-cycle

Chapter 5

Write FSM

Once the is in FSM format, you can optionally write it to a file on the
appropriate file format. In this example will write it out in the EDIF
format:

write -format edif -output food-cyc1e.edu

Using One-Hot Encoding Strategy

One-Hot (or Bit-Per-State) encoded state machines are state machines
that will get one flip-flop per enumeration value (state).

Table 5. Compact Encoded State Bits

state state-bits

reset 10000

uwait 01000

flush 00100

fill 00010

half 0000 1

Only one bit is '1' at any given time (hence "one-hot") in objects of
one-hot encoded enumerated types. For example, on the previous
example (Example 5) we saw that the five states produce a resultant
state machine using three register bits (Table 4 on page 37). With
one-hot encoding the register count would increase to five, one for
each state (Table 5).

This encoding strategy often improves the speed of the synthesized
circuit and, in Actel FPGAs, flip-flops have very low area cost, the
area may improve as well. A complete listing of a typical script file
used for the design from Example 5 is shown in Example 6. We will
assume that the state machine is but a small part of the design.

Hints On Designing with Synopsys VHDL

/ * sets the level of hierarchy to FSM design * /
current-design = food-cycle
/ * create clock (see section 3.1) * /
create-clock -name clk -period "50" -waveform ("0" "25") {clk}
/ * make sure no logic is on reset line (port) * /
dont-touch-network find(port, rst)
/ * compile design as shown with steps above * /
compile

set-fsm-state-vector {reset-reg, uwait-reg,
group -fun -design-name food-cycle-fsm
/ * sets the level of hierarchy to FSM design * /

current-design = food_cycle-fsm
set-fern-state-vector (reset-regnuwait-reg,flush-reg...}
set-fun-encoding
(*reset=Om,"uwait=2n,mflush=4","fill=8n,half=l6n}
extract
/ * reduce fern logic, set vector, encode, assign PSM order * /
reduce-f un
sat-fsm-state-vector {reset-reg,uwait-reg,flush-reg,...}
set-fsm-encoding
{areset=0a,nuwait*2n,nflush=4n,nfi11=8n,nhalf=l6m}
set-fern-order { reset, uwait, flush, fill, half)

set-fun-encoding-style one-hot
set-f em-minimize true
compile
current-design = food-cycle
write -fozmat db -heirarchy -output ./food-cycle-hot.&

Example 6. Commands (script) for One-Hot Design

These steps should produce smaller faster machines due to the large
number of registers in Actel devices. Refer to the FSM chapter in the
Design Compiler Reference Manual for more details.

Chapter 5

Manual One Hot State Encoding

If you are not using enumerated types for your state-machines, or
would like to have full control over the synthesized circuit, there is a
way to do manual one-hot on a state-machine in VHDL. Using
Table 5 and Figure 14 you can construct a simple shift-register like
state-machine. Start by encoding the equations to the registers with
the equations for each arrowhead. There are some considerations
from this type of state-machine encoding. Using Example 5 they are:

1. A case statement should not be used for state comparisons, since the state
comparison has to depend on one bit of the state vector only.
present-state used with a case statement can only compare the whole
vector.

2. The eisif construct should not be used to do the same state comparisons,
since it introduces additional constraints on the values of each state.
Using elsif means that this code is only entered if all of the previous
conditions are false. In the case of one-hot encoding, it is certain that all
previous conditions are false already.

3. It is essential to assign nat-state to zero before the state transitions are
generated. Since only a single bit of n~t-state will be set in the
transitions process, combinatorial loops would have to generated to
preserve the other bits if this initial assignment was not included.

Automatic FSM Encoding Styles

Additionally, Design Compiler can automatically select the most
appropriate encoding style by replacing the argument as follows:

set-fsm-encoding i 1
set-fsm-encoding-style auto

Hints On Designing with Synopsys VHDL

The auto encoding style uses a proprietary algorithm in which the
primary object is to determine a set of encodings that best reduces the
complexity of the combinatorial logic while using the minimum
number of encoding bits. Consequently, this encoding style is
targeted toward area optimization. Speed is not addresses directly,
but, in general, smaller area reduces delay.

Note The maximum supported state vector length for auto encoding is
30 bits.

In summary, manual one-hot encoding is not a trivial process. If
one-hot encoding does not produce the best implementation then the
VHDL code will have to be re-written. In general, a more practical
methodology for designing state-machines is to design a generic
state-machine and let Design Compiler choose the configuration best
for the application or manipulate the configuration through the script
file commands.

Power-up And Reset
For simulation, the state-machine will initialized into the leftmost
value of the enumeration type, but for synthesis it is unknown in
which state the machine powers-up. Since Design Compiler does
state encoding on the enumeration type of the state machine, the state
machine could power up in a state that is not even defined in VHDL.
Therefore to get simulation and synthesis consistency, it is very
important to supply a reset to the state machine.

If the desired state machine encoding style is one-hot then it is
imperative that the state machine is supplied a reset. Since for one-hot
style only a single register must be active, all others must be
reset/inactive. Also, for Design Compiler, it is necessary that no logic
must exists on the reset network. The dont-touch-network command
can be used to assure that no logic is generated for the reset network

Chapter 5

(Chapter 4). In order to achieve a high drive network (>24 loads) a
high drive resource must be used. In ACT 2 and ACT 3 devices a
CLKBUF is recommended (required) for highly loaded networks.
See Chapter 3 for number of resources available.

fflf-then-else" Versus "Case"
The if -then-elso statement is used in VHDL to conditionally execute
sequential statements. The case statement selects, for execution, one
of a number of alternative sequences of statements. The chosen
alternative is defined by the value of the expression. It is
recommended that the designer uses the case statement in VHDL
when they have a complex decoding situation. It is a more readable
statement than a collection of nested if-then-else statements. It
allows the designer to easily identify the value and associated actions.
Additionally, if you want Design Compiler to generate a MUX
structure for the case statement you should use the paralleYful1 case
command. Otherwise a complex priority encoder will be synthesized
(not friendly to a mux-based device).

Arithmetic Elements And Design Ware 3,7 +
When arithmetic and relational logic is used for a specific VHDL
design, Design Compiler provides a method to synthesize technology
specific implementations for these operations. Multiple
implementations of these operations (small to fast) have been
developed by Actel using the Actel structured macro generation tool
ACTgen. DesignWare is a tool that can build the supported, functions
(for bit sizes from 2 to 32 bits), but depending on the constraints (see
Chapter 3) these functions may (or may not) be used. The
DesignWare macros can offer performance improvements of up to
80 percent.

Hints On Designing with Synopsys VHDL

Designware 3.1 Performance (Post Routed)
Table 6 contains Designware "Add/Subtract" data.

Table 6. ACT 3 (standard speed) Family Design Adder Performance

Bits Area Freq

3 modules 119 MHz

9 119

19 58

35 57

47 57

50 45

74 57

57 38

86 45

87 37

94 37

74 32

88 33

124 36

113 32

11 1 28

126 3 1

133 27

146 27

140 30

167 28

156 27

165 25

202 24

170 25

DW Area

3 modules

9

14

19

21

26

30

35

39

49

53

DW Freq

119 MHz

119

109

104

69

69

68

66

64

66

64

63

63

63

63

63

48

48

48

47

46

47

47

48

46

Speed Up

+O%

+o

+89

+82

+2 1

+53

+19

+74

+42

+78

+73

+97

+9 1

+75

+97

+I25

+55

+78

+78

+57

+64

+74

+88

+loo

+84

Post Route

124 MHz

124

110

104

73

72

72

7 1

68

n/a

n/a

n/a

n/a

n/a

n/a

n/a

n/a

n/a

n/a

n/a

n/a

n/a

n/a

n/a

n/a

Chapter 5

Table 6. ACT 3 (standard speed) Family Design Adder Pelformance (Continued)

Component Instantiation

Components are a method of introducing structure in a VHDL
description. A component represents a structural module in a design.
Using components it is possible to describe a netlist in VHDL.

Basic Componen t lnstan tiation
Components are instantiated in the dataflow environment. Example 7
is an example of a structural VHDL description where a 2 bit RAM is
instantiated as a design:

ent i ty example-ram i 8

port (addr : i n bit-vector(1 downto 0);
din : i n bit-vector(1 downto 0);
wr-en : i n bit;
dout : out bit-vector(1 downto 0)) ;

end example-ram;

architecture dataflow of example-ram i s

caponent RAM16x4
port (we : i n bit;

aO, a1 : i n bit;
do, dl : inbit;
qO, ql : out bit) ;

end caponant;

begin
UIOO : ~ 1 6 x 4 port map (we => wr-en,

a0 => addr(O), a1 => addr(l),
do => din(O), dl => din(l),
qO => dout(O), ql => dout(1));

end dataflow;

Example 7. Simple Macro Cell Instantiation Example

Chapter 6

User and "Soft Macro" components can be instantiated in the same
manner. By defining the port list in a C-orient statement and
instantiating the component in the port map statement any user
defined macro can be used in a VHDL design.

Technology Independent Component Instantiation
To implement a technology independent top level VHDL description
a designer only needs to create a subdesign, with equivalent ports and
functionality using generic VHDL constructs. Then, during
technology speciJic mapping, replace the generic code with the
technology specific component netlist.

Actel Library Cell Instantiation
Example 8 is the format used to instantiate a low-level gate like an
Actel Library Cell:

component HCLKBUF port (

PAD : i n bit ;
Y : out bit ;

end component;

UO : HCLKBUF port map (PAD=>HCLK-P, Y=>CLK) ;

Example 8. Actel Library Cell Instantiation Example

Where, HCLKBUF is an Actel ACT 3 family high-speed, high drive,
low skew clock buffer. UO is the instance name, and HCLK-P and
CLK are the nets connected to pins PAD and Y, respectively.

Component Instantiation

Using 'XCTgen " Macros In Your Design
The ACTgen structured macro builder is an Actel Tool that can create
macros which can be instantiated in VHDL designs for synthesis
using Design Compiler. These macros are defined in a high level
language from which an EDIF netlist is created. The goals of the
ACTgen macro builder is to create flexible library elements that
efficiently use the Actel architecture to achieve optimal performance,
minimal module count and improved designer productivity.

ACTgen/Synopsys Design Flow

Currently, ACTgen generates counters, registers, adders, decoders,
and multiplexers. Many more functions are being added with each
release. Consult the ACTgen Macro Builder User Guide for a current
listing. To integrate an ACTgen generated component into the VHDL
design, a few simple step must be followed:

1. Invoke ACTgen, set the CAE system to generic.

2. Select Actel family, macro function and parameters.

3. Generate the macro (output sent to EDIF file).

4. Read EDIF file into Design Compiler, write as *.db

5. Identify function port names and directions

6. Instantiate component into design

7. Modify script to read (*.db or *.vhdl)

The design flow is described in Figure 16.

Chapter 6

Set CAE system to generic

Specify macro parameters

edifout

Modify scripts + r

f Compile 'I

Figure 16. ACTgenISynopsys Design Flow

Component Instantiation

lnstantiation
Input and output buffers are automatically inferred. The following
scripts must be set prior to optimization in order to perform I/O buffer
mapping with Design Compiler or dc-shell.

s e t g o r t - i s g a d al l- inputs0
se tgort - ingad all-outputs0
setgad- type al l- inputs0
setgad- type all-outputs0
setgad-type -clock CLK
insertgads

Where, CLK is an example port name.

These scripts will cause Design Compiler to map all I/O ports
specified to an Actel 110 buffer. The clock function, described in the
VHDL design file, will be mapped to a CLKBUF. After each switch is
set, messages appear showing the corresponding switch function
being implemented for applicable 110 ports, as shown in the example
below:

Performing s e t g o r t - i s g a d on port ' i n l '
Performing rretgort-isgad on port 'out la
Performing setgad- type on port ' i n l l
Performing setgad- type on port * o u t l l
Performing setgad- type on port 'CLK1

Where, inl, out1 and CLK are examples of port names.

Chapter 6

A simpler way of applying LIO buffers is by using the script,

setsort-isgad <design-name>

Which places an INBUF on an input, OUTBUF on an output and
CLKBUF on a clock line.

Most F requen fly Asked Questions

Where do I install the Actel/Synopsys libraries and how do I read
in the libraries?

The libraries may be installed anywhere on the system and the
following path should be specified in the .synopsys-dc.setup file:

target-library = -synopsys/library/actXX_31.db;
symbol-library = -synopsys/library/actXXsym.sdb;
link-library = -synopsys/library/actxx_3l.db;
read -synopsys/library/actXX-3l.db;

Where, XX = 1,2,3 are the actel family pointers, (e.g. n=3 specifies
ACT3), and -synopsys/library is the directory where the libraries
have been installed. If the libraries are installed at a different location,
the library path should be modified accordingly.

What scripts do I need to set for generating an Actel specific EDIF
netlist 7

The following scripts have to be specified in the .synopsys-dc.setup
file in order to generate an Actel specific EDIF netlist:

edifout-no-array = true
edifout-netlist-only = true
edifoutqower~and~ground~representation = cell
edifout-ground-name = GND
edifoutqower-name = VCC
edifout-groundqin-name = Y
edifoutqowerqin-name = Y
edifoutqrettyqrint = true
read-array-naming-style = "%s<%d>"

Does Acfel support backannotation in Viewlogic's Viewsim?

Actel is still in the process of testing this flow for backannotation.
However, several customers have successfully backannotated to
Viewsim. An outline of the necessary steps for backannotation, upon
completion of place and route, are:

Chapter 7

Generate a WIR file using,

edifneti <design-name>.edn

The wir files are placed in the WIR subdirectory of the primary
design directory. If you wish to generate schematics for the design,
use

viewgen <design-name>

Then generate a vsm file using,

del2vl <design-name>

What scripts do I need to set for Actel specific EDlF netlist
generation for back annotation?

Using the ungroup command for flattening the design is recommended
for an optimal design. However, this puts /'s in instance names in the
Synopsys generated EDIF file, which is mistaken as a level of
hierarchy during the Actel design flow. In order to avoid such
confusion, the following scripts should be used for EDIF generation.

Using Viewsim, a Viewlogic simulator, the following scripts should
be set in Design-Analyzer or dc-shell for EDIF generation:

define-name-rules CAPS -allowed "A-Z 0-9 -"
change-names -rules CAPS -hierarchy

This will capitalize all instance names in the EDIF file, thereby
avoiding any conflicts that might occur due to the case of the
alphabets.

define-name-rules RESl -restricted ' / " -replacement-char '-"
change-names -rules RESl -hierarchy

Most Frequently Asked Questions

This script will replace all /'s with -'s in instance names since /'s
might be mistaken as a level of hierarchy at some stage of the design
flow. The same script can be used for replacing Ys with another
character.

I want to change the maximum fanout on my design. It currently
limits me to 16 but I want to reduce it,

By default, the ACT1 library fanout limit is set to 10 and the ACT 2
and ACT 3 is set to 16. The maximum fanout can be changed for the
design using the "~et-nmc-ianout" script. However, the new fanout
limit should not be applied to the clock buffer network. This is
accomplished using:

Design Compiler will always choose the most restrictive!!!

I specify my max fanout to be n. However, this limit is ignored for
logic blocks that have the dont-touch attribute. Why does
Synopsys ignore this design rule? How can I force Synopsys to
obey this design rule?

The following suggestion should address this problem:

Remove the aont-touch attribute on the blocks which do not obey the
fanout constraints. Specify the max fanout at the top level using the
set-w- ianout script. Then perform an incremental compile at the
top level using:

compi le -only-design-rule

Consequently, compilation will follow the design rules (for example,
set---fanout) and individual blocks will not be recompiled.

Chapter 7

The read-array-naming-style script USBS < > instead of () for array
notation. When I write out script files while characterizing, the
script files have < > instead of 0. Synopsys cannot read in script
files with < > for array notation. Synopsys can only read in 0.
What can I do?

The read-array-naming-style script reads in VHDL which has [] for
array notation and converts them to < >. If you are characterizing
your blocks and writing out script files, this switch writes < > for
arrays in the script files. However, Synopsys cannot read script files
which use < > for array notation since the m a y terminology has to be
[1. In order to successfully read in the script files after
characterization, the < > array terminology has to be changed to []
before the script file is written, using the following scripts in
Synopsys version 3 . 0 ~ :

define-name-rules ARRAY -restricted '<" -replacement-char ' ["
definegame-rules ARRAY -restricted ">" -replacement-char ' 1 "
change-names -rules ARRAY -hierarchy

The following script will list the rules being applied,

report-name-rules ARRAY

These scripts will ensure that the script files are written out with [I
rather than < > for array notation.

Why do some of the ACT2 and ACT3 macros have "aont-use"
attribute attached to them and how do I remove this attribute?

The "aont-use'' attribute has been attached to several ACT2 and
ACT3 sequential macros that use one sequential and one
combinational logic module. These two module macros are
considered inefficient compared to others in the library.

The "aont-use" attribute can be removed by using the
"ramovs-attribute" command.

Most Frequently Asked Questions

How do I translate from the Synopsys to the ALS environment?

After optimizing and flattening the design (using the unoroup
command) in the Synopsys environment, and setting the appropriate
EDIF scripts in the .synopsys-dc.setup file,

An EDIF netlist from Synopsys is generated by executing the
following command:

write -f edif -0 <design-name>.edn <design-name>

The EDIF netlist, <design-name>.edn, is converted to an Actel
specific netlist, <design-name>.adl, file using the program, cae2adl.
The syntax for invoking the command is:

caeladl -edn2adl fam:<value> ednin:<edif netlist filename>.edn
NObad0rigName:T <design-name>

where,

fam

ednin

is the family type, either ACT 1, ACT 2 or
ACT 3

is the EDIF file to be converted, which must
be <design-name>.edn

NObad0rigName:T ensures that the Edif name is used by the Actel
suite of programs if the original name is not
completely legal.

<design-name> is the name of the design.

Note A successful generation of the <design-name>.adl file will create two
additional files in the <design-name> directory: <design-narne>.crt
and <design-name>.ipf.

Invoke the Actel suite of programs by typing,

als <design-name> (version: ALS 2.3)
designer (version: Designer for X-Windows)

from the <design-name> directory.

How do I assign pins to my design?

The Actel place and route suite of programs offer fully automatic pin
assignment, logic assignment, and routing. However, the user has the
capability of manual pin assignment. This procedure is described in
the Designer Series user guide.

I have optimized my design and generated an ad1 netlist using
EDN2ADL, but when I try to use Pin Edit, an error stating "bad
checksum, certify the <design-name>.ipf file" is issued.

This problem occurs when the top level of hierarchy described in the
HDL is not the same name as the directory in which the EDIF netlist
exists as well as the <design-name> specified in the EDN2ADL
command. For example, if the top level entity in the HDL is dma,
then the EDIF netlist and HDL for the design, dma, must reside in a
directory named, dma, and the <design-name> specified in the
EDN2ADL statement must be dma.

After making design changes and regenerating a netlist, Actel
no longer recognizes my <design-name>.ipf file. Why?

Only if users have changed their primary LIO names will they need to
follow the instructions below:

Users who have completed their board design need to fix pins on their
chip. This fixed pin information is saved in the <design-name>.ipf
file. After every design iteration a new edif netlist,
<design-name>.edn, is created. Consequently, a new

Most Frequently Asked Questions

<designgame>.ipf file has to be created since there will be
mismatches between the old <design-name>.ipf and new
<design-narne>.edn. The <designgame>.ipf file will not
automatically update itself to match the new edif netlist.

